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Introduction (TS 2.0) Motivating example

Motivating example
mut <- (1:12000)/1000
wt <- rnorm(12000, 0, 1)
xt <- mut + wt
xt <- as.ts(xt, frequency = c(12))
plot(xt)
lines(mut, col = "red", lwd = 2)
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Introduction (TS 2.0) Motivating example

cor(xt[1:11999], xt[2:12000])

## [1] 0.9228348
cor(xt[1:11998], xt[3:12000])

## [1] 0.9234209
acf(xt)
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Introduction (TS 2.0) Motivating example

cor(wt[1:11999], wt[2:12000])

## [1] -0.006749651
cor(wt[1:11998], wt[3:12000])

## [1] 0.001052244
acf(wt)
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Introduction (TS 2.0) Objectives

Objectives

In the previous module we discussed how important it is to have
stationary time series, and started to hint at methods to render time
series stationary and/or white noise.
In this module we discuss those techniques more precisely and more
comprehensively.
This includes:

regression in the context of time series
de-trending via regression
de-trending via differencing
nonparametric smoothing of time series
(to help with the identification of trends)

We will also introduce the backshift operator, which we will use
extensively in Module 9.
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Classical regression in the Time Series Context (TS 2.1) Regression with independent series

Regression with independent series

Assume some output or dependent time series xt , for t = 1, . . . , n, is
being influenced by a collection of q possible inputs or independent series
zt1, zt2, . . . , ztq, where we first regard the inputs as fixed and known. We
have then

xt = β0 + β1zt1 + β2zt2 + · · · + βqztq + wt ,

where β0, β1, . . . , βq are unknown fixed regression coefficients, and
wt ∼ iid N(0, σ2

w ) Note:

zt· being fixed and known is necessary for applying conventional linear
regression, but we will relax this later on
For time series regression wt is rarely a white noise, so we will need to
relax that assumption
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Classical regression in the Time Series Context (TS 2.1) Example: de-trending with a linear trend

Model

Monthly price xt (per pound) of a chicken in the US from mid-2001 to
mid-2016 (180 months)
We model the trend with a linear regression:

xt = β0 + β1zt + wt , zt = 2001 7
12 , 2001 8

12 , . . . , 2016 6
12 ,

where zt are months in the data. Note here q = 1.
Note underlying assumption are that wt ∼ iid N(0, σ2

w ) (uncorrelated),
which may not be true.
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Classical regression in the Time Series Context (TS 2.1) Example: de-trending with a linear trend

summary(fit <- lm(chicken ~ time(chicken), na.action = NULL))

...
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7.131e+03 1.624e+02 -43.91 <2e-16 ***
## time(chicken) 3.592e+00 8.084e-02 44.43 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
...

This means that β̂1 = 3.59 with standard error of 0.081 (increase of
about 3.6 cents per year)
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Classical regression in the Time Series Context (TS 2.1) Example: de-trending with a linear trend

Fitting results
plot(chicken, ylab = "US cents per pound", col = "blue", lwd = 2,

main = "Price of chicken with fitted linear
trend line (spot price, Georgia docks, 08/01-07/16)")

abline(fit, col = "red", lwd = 2) # add the fitted line
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Classical regression in the Time Series Context (TS 2.1) Revisions: Regression

General set-up

The multiple linear regression model written earlier can be written using
vectors zt = (1, zt , zt2, . . . , ztq)′ and β = (β0, β1, . . . , βq)′:

xt = β0 + β1zt1 + β2zt2 + · · · + βqztq + wt = β′zt + wt .

Parameters estimates β̂ are obtained via ordinary least squares (OLS),
that is, we minimise

Q =
n∑

t=1

(
xt − β′zt

)2 =
n∑

t=1
w2

t

with resulting minimum SSE =
n∑

t=1

(
xt − β̂′zt

)2
,

called sum of squares.
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Classical regression in the Time Series Context (TS 2.1) Revisions: Regression

Properties of β̂

Estimator β̂ is unbiased and has the smallest variance within the class
of linear unbiased estimators

If wt are normally distributed:

β̂ also normally distributed with mean β and variance-covariance matrix

Cov(β̂) = σ2
w C , C =

( n∑
t=1

ztz ′
t

)−1

.

Denote cii as the i-th diagonal element of C .
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Classical regression in the Time Series Context (TS 2.1) Revisions: Regression

If wt are normally distributed and σ2
w needs to be estimated:

the distribution of β̂ changes to a t-distribution. In this case,

t = β̂i − βi
sw

√cii
∼ t distributed(n − (q + 1)),

where
s2
w = SSE

n − (q + 1) = MSE

is an unbiased estimator for σ2
w , called also mean squared error

(MSE).

This means we can construct of hypothesis test of type H0 : βi = 0,
i = 1, . . . , q.
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Classical regression in the Time Series Context (TS 2.1) Stepwise multiple regression

Revisions: select zti through β̂

The question of model selection boils down to
how many independent variables (q) to use?
which independent variables (zti) to use?

Strategy is to test for statistical significance of the βi ’s: is there
statistical evidence that βi is different from 0?
This can be done for a given independent variable i , but this approach
can prove tedious in practice:

the statistical significance of a given βi changes once others are added /
removed (as they may be correlated)
so if you have q variables, answering the two questions above with an
exhaustive analysis requires testing q! + (q − 1)! + · · · + 1 models (quite
a lot!)

Hence, we often compare a smaller number of models, and perform
tests by comparing model performance in a pairwise fashion.
This is called stepwise multiple regression.
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Classical regression in the Time Series Context (TS 2.1) Stepwise multiple regression

Process

Consider:

Two models of different sizes for the same data, one with r parameters,
and the other with q > r parameters
Furthermore, the original r parameters are all included in the wider set
of q parameters (the smaller model is “nested” within the larger one)

Were improvements introduced by the extra q − r variables in the larger
model statistically significant?

This is done by comparing the sum of squares between the reduced
model ( SSEr , with r parameters) and the original sum of squares (
SSE , with q parameters).

We have that

F = (SSEr − SSE )/(q − r)
SSE/(n − q − 1) ≡ MSR

MSE ∼ F − distribution(q − r , n − q − 1).
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Classical regression in the Time Series Context (TS 2.1) Stepwise multiple regression

Results are summarised in an Analysis of Variance (ANOVA) table

Source df Sum of squares Mean square F

zt,r+1:q q − r SSR ≡ SSEr − SSE MSR ≡ SSR
q−r F =

MSR
MSE

Error n −
(q+1)

SSE MSE ≡ SSE
n−q−1

Such an output is generated by the R function aov, which outputs
p-values for F and significance levels.
If r = 0 the reduced model is xt = β0 + wt and the ratio

R2 = SSE0 − SSE
SSE0

is called the coefficient of determination, which is one measure of
the proportion of variation explained by all q variables.
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Classical regression in the Time Series Context (TS 2.1) Model selection

Motivation

Note that stepwise regression presents some issues:

There are a lot of paths from the null (q = 0) to the full (q = n)
model, and it is not always clear which ones to investigate first, and
there can be a lot of trial and error
One can compare only nested models - what if we want to compare
with models of a different nature?
Asymptotic results behind the hypothesis tests that are used
pre-suppose normality of the errors, which is not always correct.

What if one wanted to assess models based on their own merits, rather than
sequentially? This leads to the idea of information criteria. These balance
the concepts of

likelihood (the more parameters the better), and
parsimony, represented by the number of parameters
(the least parameters the better).
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Classical regression in the Time Series Context (TS 2.1) Model selection

Preliminary

First, note that the maximum likelihood estimator for the variance is

σ̂2
k = SSE (k)

n ,

where SSE (k) denotes the residual sum of squares under the model with k
regression coefficients, and where n is the sample size.
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Classical regression in the Time Series Context (TS 2.1) Model selection

Information criteria

There are three main Information Criteria:

Akaike’s Information Criterion (AIC):

AIC = −2 log Lk + 2k ≡ log σ̂2
k + n + 2k

n .

Note that the well known AIC expression thus simplifies (” ≡ ”) in the
context of a normal regression.
AIC, Bias Corrected (AICc):

AICc = log σ̂2
k + n + k

n − k − 2 .
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Classical regression in the Time Series Context (TS 2.1) Model selection

Bayesian Information Criterion (BIC)

BIC = log σ̂2
k + k log n

n .

This is also called the Schwarz Information Criterion (SIC).

Note:

The penalty in BIC is much larger than in the AIC. BIC tends to
choose small models.
Generally, BIC is better for large samples, and AICc for smaller samples
where the relative number of parameters is large.
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Classical regression in the Time Series Context (TS 2.1) Example: Pollution, Temperature and Mortality

Example: Pollution, Temperature and Mortality

We consider three time series (see next slide):

Average weekly cardiovascular mortality (top)
Temperature (middle)
Particulate pollution (bottom)

in Los Angeles County. There are 508 six-day smoothed averages obtained
by filtering daily values over the 10 year period 1970-1979.
par(mfrow = c(3, 1)) # plot the data
plot(cmort, main = "Cardiovascular Mortality", xlab = "", ylab = "",

col = "red", lwd = 2)
plot(tempr, main = "Temperature", xlab = "", ylab = "", col = "blue",

lwd = 2)
plot(part, main = "Particulates", xlab = "", ylab = "", col = "green",

lwd = 2)

ts.plot(cmort, tempr, part, col = c("red", "blue", "green")) # all on same plot (not shown) dev.new()
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Classical regression in the Time Series Context (TS 2.1) Example: Pollution, Temperature and Mortality
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Classical regression in the Time Series Context (TS 2.1) Example: Pollution, Temperature and Mortality
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Classical regression in the Time Series Context (TS 2.1) Example: Pollution, Temperature and Mortality

Note:
We want to investigate the effects of temperature and pollution on
weekly mortality in LA.
There are strong seasonal components in all series (winter/summer).
Downwards trend for cardiovascular mortality.

We need more analysis to choose model candidates.

Here, scatterplots are informative (output on next slide):
pairs(cbind(Mortality = cmort, Temperature = tempr, Particulates = part))
temp <- tempr - mean(tempr) # center temperature
temp2 <- tempˆ2
trend <- time(cmort) # time

There is possible linear relation between mortality and particulates
Also, there is a curvilinear shape of temperature mortality curve:
temperature extremes are associated with higher mortality
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Classical regression in the Time Series Context (TS 2.1) Example: Pollution, Temperature and Mortality
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Classical regression in the Time Series Context (TS 2.1) Example: Pollution, Temperature and Mortality

Based on the scatterplot matrix we consider the following models:

Mt = β0 + β1t + wt
Mt = β0 + β1t + β2(Tt − T·) + wt
Mt = β0 + β1t + β2(Tt − T·) + β3(Tt − T·)2 + wt
Mt = β0 + β1t + β2(Tt − T·) + β3(Tt − T·)2 + β4Pt + wt

where T· = 74.26 is the temperature mean.
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Classical regression in the Time Series Context (TS 2.1) Example: Pollution, Temperature and Mortality

fit <- lm(cmort ~ trend + temp + temp2 + part, na.action = NULL)
summary(fit) # regression results

...
## Residuals:
## Min 1Q Median 3Q Max
## -19.0760 -4.2153 -0.4878 3.7435 29.2448
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.831e+03 1.996e+02 14.19 < 2e-16 ***
## trend -1.396e+00 1.010e-01 -13.82 < 2e-16 ***
## temp -4.725e-01 3.162e-02 -14.94 < 2e-16 ***
## temp2 2.259e-02 2.827e-03 7.99 9.26e-15 ***
## part 2.554e-01 1.886e-02 13.54 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.385 on 503 degrees of freedom
## Multiple R-squared: 0.5954, Adjusted R-squared: 0.5922
...
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Classical regression in the Time Series Context (TS 2.1) Example: Pollution, Temperature and Mortality

summary(aov(fit)) #ANOVA table (compare to next code chunk!)

## Df Sum Sq Mean Sq F value Pr(>F)
## trend 1 10667 10667 261.62 <2e-16 ***
## temp 1 8607 8607 211.09 <2e-16 ***
## temp2 1 3429 3429 84.09 <2e-16 ***
## part 1 7476 7476 183.36 <2e-16 ***
## Residuals 503 20508 41
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

→ Each addition is significant.
summary(aov(lm(cmort ~ cbind(trend, temp, temp2, part)))) # Table 2.1

## Df Sum Sq Mean Sq F value Pr(>F)
## cbind(trend, temp, temp2, part) 4 30178 7545 185 <2e-16 ***
## Residuals 503 20508 41
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Classical regression in the Time Series Context (TS 2.1) Example: Pollution, Temperature and Mortality

num <- length(cmort) # sample size
AIC(fit)/num - log(2 * pi) # AIC

## [1] 4.721732
BIC(fit)/num - log(2 * pi) # BIC

## [1] 4.771699
AICc <- log(sum(resid(fit)ˆ2)/num) + (num + 5)/(num - 5 - 2) # AICc
AICc

## [1] 4.722062
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Classical regression in the Time Series Context (TS 2.1) Example: Regression with lagged variables

Example: Regression with lagged variables

Recall the SOI and (fish) Recruitment series: previous data analysis
suggested that SOI led Recruitment by six months. The relationship is not
linear, but we consider (for now)

Rt = β0 + β1St−6 + wt ,

which becomes, after fitting (if wt is assumed Gaussian white)
Rt = 65.79 − 44.28(2.78)St−6,

with σ̂w = 22.5 (on 445 degrees of freedom):
fish <- ts.intersect(rec, soiL6 = stats::lag(soi, -6), dframe = TRUE)
summary(fit1 <- lm(rec ~ soiL6, data = fish, na.action = NULL))
...
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 65.790 1.088 60.47 <2e-16 ***
## soiL6 -44.283 2.781 -15.92 <2e-16 ***
...

→ SOI is a strong predictor of Recruitment30/66
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Exploratory Data Analysis (TS 2.2) Context

Context

Remember
xt = µt + yt

is called trend stationary if yt is stationary.

“Removing” µt is called “detrending”, and we distinguish two types thereof:

via regression: This involves fitting a regression model for µ̂t (as per
the previous section).

This is a parametric approach: µ̂t is known, but for parameter and
model risk.

via differencing: This involves modifying the series by looking at
differences over time, rather than absolute values.

This is a non parametric approach: we do not need to specify a model,
but µ̂t remains unknown and unmodelled.
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Exploratory Data Analysis (TS 2.2) Detrending via regression

Example: Chicken prices detrended via regression

From before:
fit <- lm(chicken ~ time(chicken), na.action = NULL) # regress chicken on time
plot(resid(fit), type = "l", main = "Price of chicken detrended via regression

(spot price, Georgia docks, 08/01-07/16)")

Price of chicken detrended via regression
     (spot price, Georgia docks, 08/01−07/16)
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Note that the residuals are, by definition, equal to ŷt which we would
like to be stationary.
Here we have µt = β0 + β1t as before
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Exploratory Data Analysis (TS 2.2) Differencing
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Exploratory Data Analysis (TS 2.2) Differencing

Differencing

What if µt does not look like a linear trend?

In that case detrending via (linear) regression is not adequate
This may suggest that the trend / mean is random

In this case one can look at the difference from one point to the next:

∇xt ≡ xt − xt−1

If the mean is random, this should yield the difference in random means
(from t − 1 to t), plus the difference of the detrended (assumed stationary)
underlying series (which we are seeking).

33/66



Exploratory Data Analysis (TS 2.2) Differencing

As an example, consider the simplest model with a random mean: the
random walk with drift

µt = δ + µt−1 + wt ,

where wt is the random component of the mean.

Using differencing yields

∇xt ≡ xt − xt−1 = (µt + yt) − (µt−1 + yt−1) = δ + wt + (yt − yt−1),

where zt = yt − yt−1 is stationary, and hence xt − xt−1 is stationary too.

Note:

a first difference removes a linear (random) trend
a second difference ( ∇2, differencing the differenced series) removes a
quadratic trend
etc. . .
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Exploratory Data Analysis (TS 2.2) Differencing

Example: Differencing Global Temperatures

Remember the Global Temperatures series:
plot(gtemp_land, type = "o", ylab = "Global Temperature Deviations",

main = "Yearly average global temperature deviations (1880-2015) in degrees centigrade (base period: 1951-1980)")

Yearly average global temperature deviations (1880−2015) in degrees centigrade (base period: 1951−1980)
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Exploratory Data Analysis (TS 2.2) Differencing

par(mfrow = c(2, 1))
plot(diff(gtemp_land), type = "l", main = "Global temperature detrended via first difference")
acf(diff(gtemp_land), 48)

Global temperature detrended via first difference
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Exploratory Data Analysis (TS 2.2) Differencing

How does differencing compare with regression?

Differencing can be seen as “without loss of generality” as compared to
the regression case.
If the regression model was appropriate, we would have

µt = β0 + β1t

and differencing would lead to

∇xt = xt − xt−1 = (µt + yt) − (µt−1 + yt−1) = β1 + yt − yt−1,

which is stationary (residuals yt are uncorrelated normal in a
regression).
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Exploratory Data Analysis (TS 2.2) Differencing

Example: Chicken prices detrended via differencing
plot(diff(chicken), type = "l", main = "Price of chicken detrended via first difference

(spot price, Georgia docks, 08/01-07/16)")

Price of chicken detrended via first difference
     (spot price, Georgia docks, 08/01−07/16)
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Although results are different, both methods can potentially work.
The question is whether the drift is likely deterministic or random. If
random, differencing could remove it without making
an assumption about it.38/66



Exploratory Data Analysis (TS 2.2) Differencing

Comparison of autocorrelation in the residuals
par(mfrow = c(3, 1)) # plot ACFs
acf(chicken, 48, main = "chicken")
acf(resid(fit), 48, main = "detrended via regression")
acf(diff(chicken), 48, main = "detrended via first difference")

See next slide for those graphs:

The ACF of residuals after differencing exhibits an annual cycle that
was obscured in the regressed data.

That was probably due to the (erroneous) assumption of wt (the errors in
the regression) to be white.
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Exploratory Data Analysis (TS 2.2) Differencing
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Exploratory Data Analysis (TS 2.2) Backshift operator

Backshift operator

We define the backshift operator by

Bxt = xt−1

and extend it to powers B2xt = B(Bxt) = Bxt−1 = xt−2, and so on. Thus,

Bkxt = xt−k .

Note:

This notation allows for compact definition of models, and easier
algebraic calculations.
The forward-shift operator is the inverse such that

xt = B−1Bxt = B−1xt−1.

We define differences of order d as

∇d = (1 − B)d .
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Exploratory Data Analysis (TS 2.2) Transformations

Transformations

Obvious aberrations and nonlinear behaviour, if present, can lead to
nonstationarity.
Transformations may be useful to equalise the variability over the
length of a single series. A particularly useful transformation is

yt = log xt ,

which tends to suppress larger fluctuations that occur over portions of
the series where the underlying values are larger.
(Think, for instance, of the Johnson & Johnson data)
Transformations can also be used to improve the approximation to
normality or to improve linearity in predicting the value of one series
from another.
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Exploratory Data Analysis (TS 2.2) Scatterplot matrices

Scatterplot matrices

This is another preliminary data processing technique, to visualise the
relations between series at different lags.
The ACF—a single number—focuses on linear predictability only
(since it displays correlations).
Scatterplots (one for each lag) are informative to diagnose nonlinear
relationships: they display the whole profile of the relation.
They give a visual sense of which lag will lead to the best predictability
This can be done for a single series or between two series—say, yt vs
xt−h
The red lines are locally weighted “scatterplot smoothing lines” (more
precisely, lowess lines—see next section); they help identify non-linear
relationships.
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Exploratory Data Analysis (TS 2.2) Scatterplot matrices

Example: SOI vs recruitment

Scatterplot for SOI only (next slide)
lag1.plot(soi, 12)

The red lines are more or less linear for lagged SOI → sample
autocorrelations are meaningful

Scatterplot for Recruitment Rt vs SOI h lags earlier St−h (following slide)
lag2.plot(soi, rec, 8)

Red lines are highly nonlinear around lag 6. However, they seem to be
linear for given sign of SOI

How would you model this nonlinear relationship?
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Exploratory Data Analysis (TS 2.2) Scatterplot matrices

Using dummy variables we can model this:

Rt = β0 + β1St−6 + β2Dt−6 + β3Dt−6St−6 + wt

=
{

β0 + β1St−6 + wt if St−6 < 0,
(β0 + β2) + (β1 + β3)St−6 + wt if St−6 ≥ 0,

where Dt = 0 if S < 0 (1 otherwise).
dummy <- ifelse(soi < 0, 0, 1) # for the piecewise regression
fish <- ts.intersect(rec, soiL6 = stats::lag(soi, -6), dL6 = stats::lag(dummy,

-6), dframe = TRUE)
summary(fit <- lm(rec ~ soiL6 * dL6, data = fish, na.action = NULL))

...
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 74.479 2.865 25.998 < 2e-16 ***
## soiL6 -15.358 7.401 -2.075 0.0386 *
## dL6 -1.139 3.711 -0.307 0.7590
## soiL6:dL6 -51.244 9.523 -5.381 1.2e-07 ***
...
attach(fish)
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Exploratory Data Analysis (TS 2.2) Scatterplot matrices

plot(soiL6, rec, main = "Recruitment (Rt) vs SOI lagged 6 months (St-6) with the fitted values
of the regression as points (+) and a lowess fit (-)")

lines(lowess(soiL6, rec), col = "blue", lwd = 3)
points(soiL6, fitted(fit), pch = "+", col = 2, cex = 1.5)
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     of the regression as points (+) and a lowess fit (−)
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Exploratory Data Analysis (TS 2.2) Scatterplot matrices

plot(resid(fit), main = "Residuals of recruitment (Rt) vs SOI lagged 6 months (St-6)
with the fitted values of the regression as points (+) and a lowess fit (-)")

Residuals of recruitment (Rt) vs SOI lagged 6 months (St−6)
     with the fitted values of the regression as points (+) and a lowess fit (−)
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Exploratory Data Analysis (TS 2.2) Scatterplot matrices

acf(resid(fit), main = "ACF of the residuals") # obviously not noise

0.0 0.5 1.0 1.5 2.0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

ACF of the residuals

residuals are not white noise - we would need to model cycles next
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Smoothing in the Time Series Context (TS 2.3) Introduction

Introduction

The first difference ∇ is an example of linear filter applied to eliminate
a trend.
Other filters, formed by averaging values near xt , can produce adjusted
series that eliminate other kinds of unwanted fluctuations.
This can help discover certain traits in a time series, such as long-term
trend and seasonal components.
Here we review such filtering techniques, with illustrations.
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Smoothing in the Time Series Context (TS 2.3) Introduction

Example: SOI
ts.plot(soi, ylab = "", xlab = "", main = "South Oscillation Index SOI

(changes in air pressure, related to sea surface temperatures, in the central Pacific Ocean)")

South Oscillation Index SOI
        (changes in air pressure, related to sea surface temperatures, in the central Pacific Ocean)
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How easy is it to see the El Niño cycles, and distinguish them from the
(strong) annual cycles?
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Smoothing in the Time Series Context (TS 2.3) Moving Average Smoother

Moving Average Smoother

If xt represents the observations, then

mt =
k∑

j=−k
ajxj ,

where

aj = a−j ≥ 0, and where
k∑

j=−k
aj = 1,

is a symmetric (two-sided) moving average of the data.

Note:

When their profile is flat, the weights aj are sometimes referred to as
“boxcar-type” weights.
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Smoothing in the Time Series Context (TS 2.3) Moving Average Smoother

Example: Moving Average Smoother on SOI
wgts <- c(0.5, rep(1, 11), 0.5)/12
soif <- stats::filter(soi, sides = 2, filter = wgts)
par()
plot(soi, main = "Moving average smoother of SOI.

The insert shows the shape of the moving average (\"boxcar\") kernel [not drawn to scale]")
lines(soif, lwd = 3, col = "blue")
par(fig = c(0.65, 1, 0.65, 1), mar = c(5, 3.5, 4.1, 2.1), new = TRUE) # the insert
nwgts <- c(rep(0, 20), wgts, rep(0, 20))
plot(nwgts, type = "l", ylim = c(-0.02, 0.1), xaxt = "n", yaxt = "n",

ann = FALSE)

This particular method removes (filters out) the obvious annual
temperature cycles, and helps emphasize the El Niño cycles
However, it is still quite choppy, probably due to the (relatively non
smooth) boxcar weights
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Smoothing in the Time Series Context (TS 2.3) Moving Average Smoother

Moving average smoother of SOI.
     The insert shows the shape of the moving average ("boxcar") kernel [not drawn to scale]
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Smoothing in the Time Series Context (TS 2.3) Kernel Smoothing

Kernel Smoothing

If xt represents the observations, then

mt =
n∑

i=1
wi(t)xi , where wi(t) =

K
(

t−i
b

)
∑n

k=1 K
(

t−k
b

)
are the weights, and where K (·) is a kernel function.

Each mt uses all the xt ’s, contrary to the moving average smoother
A typical kernel is the normal kernel,

K (z) = 1√
2π

e− 1
2 z2

.
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Smoothing in the Time Series Context (TS 2.3) Kernel Smoothing

In R, the function to use is ksmooth(x, y, kernel = c("box",
"normal"), bandwidth) Note:

The wider the bandwidth, the smoother the result
Kernels are scaled such that the kernel quartiles (viewed as probability
densities) are at ±0.25×bandwidth

E.g., for the normal distribution, the quartiles are ±0.674—this means
Φ(0.674) − 0.5 = 25%

In the next example, the bandwidth is 1 to correspond to approximately
smoothing a little over one year:

The standard normal quartile 0.674 is scaled to be at 0.25 × 1 = 0.25,
so ±0.25 after scaling corresponds to 50% of the original standard
normal
±0.5 thus corresponds to ±2 · 0.674 = ±1.328 in terms of original
standard normal, which corresponds to 2 × [Φ(1.328) − 0.5] ≈ 82.2%
of the density.
Similarly, ±0.75 corresponds to ≈ 95.6% of the density.
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Smoothing in the Time Series Context (TS 2.3) Kernel Smoothing

Example: Kernel smoothing on SOI
plot(soi, main = "Kernel smoother of SOI.

The insert shows the shape of the normal kernel [not drawn to scale]")
lines(ksmooth(time(soi), soi, "normal", bandwidth = 1), lwd = 3,

col = "blue")
par(fig = c(0.65, 1, 0.65, 1), mar = c(5, 3.5, 4.1, 2.1), new = TRUE) # the insert
gauss <- function(x) {

1/sqrt(2 * pi) * exp(-(xˆ2)/2)
}
x <- seq(from = -3, to = 3, by = 0.001)
plot(x, gauss(x), type = "l", ylim = c(-0.02, 0.45), xaxt = "n",

yaxt = "n", ann = FALSE)
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Smoothing in the Time Series Context (TS 2.3) Kernel Smoothing

Kernel smoother of SOI.
     The insert shows the shape of the normal kernel [not drawn to scale]
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Smoothing in the Time Series Context (TS 2.3) Lowess

Lowess

Lowess is complex, but close to the idea of k-nearest neighbor
regression, where one uses only the data

(xt−k/2, . . . , xt , . . . , xt+k/2)

to predict xt via regression, and then sets mt = x̂t .
In R, the function is lowess(x,f=2/3) where f is the smoother span
with default value 2/3
The smoother span is the proportion of points in the plot which
influence the smooth at each value. Larger values give more
smoothness.
One can also smooth a time series x as function of another series y.
We use then lowess(x,y).
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Smoothing in the Time Series Context (TS 2.3) Lowess

Example: Lowess on SOI
plot(soi, main = "Locally weighted scatterplot smoothers (lowess) of the SOI series.")
lines(lowess(soi, f = 0.05), lwd = 3, col = "blue") # El Nino cycle
lines(lowess(soi), lty = 2, lwd = 3, col = "red") # trend (with default span)

Locally weighted scatterplot smoothers (lowess) of the SOI series.
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Smoothing in the Time Series Context (TS 2.3) Lowess

Example: Lowess of mortality as a function of temperature
plot(tempr, cmort, xlab = "Temperature", ylab = "Mortality",

main = "Smooth of mortality as a function of temperature using lowess")
lines(lowess(tempr, cmort), lwd = 3, col = "blue")
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Smoothing in the Time Series Context (TS 2.3) Smoothing splines

Preliminary: Polynomial regression

A polynomial regression in terms of time would involve setting

xt = mt + wt , where mt = β0 + β1t + β2t2 + β3t3 + . . . .

Then, mt would be fit to data using ordinary least squares (which assumes
wt is normal).

One possible extension is to fit polynomials to the series in a piecewise
fashion:

Divide time into k intervals

[t0 = 1, t1], [t1+1, t2], . . . , [tk−1 + 1, tk = n],

where t0, t1, . . . , tk are called knots.
Then, in each interval, one fits a polynomial regression, typically of
order 3 (in which case these are called cubic splines).
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Smoothing in the Time Series Context (TS 2.3) Smoothing splines

Smoothing splines

Here we minimise a compromise between fit and smoothness:
n∑

t=1
[xt − mt ]2 + λ

∫ (
m′′

t
)2 dt,

where mt is a cubic spline with a knot at each t. The degree of
smoothness is controlled by λ, and is an extra parameter that is useful.

if λ = 0 then mt = xt which is useless and smoothes nothing.
if λ = ∞ we are infinitely focussed on the second derivative of mt , so
that mt = c + vt which is extremely smooth.
λ allows thus for a spectrum between linear regression (∞) and the
data (0) —the larger the λ, the smoother the fit.

The fact that one does not need to choose knots can be seen as an
advantage (objective), but this is why ” λ smoothness” is required
to avoid overfitting.
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Smoothing in the Time Series Context (TS 2.3) Smoothing splines

Example: Splines on SOI
plot(soi, main = "Smoothing splines fit to the SOI series

(spar=0.5 in blue to emphasise El Niño cycle, and spar=1 in red to emphasise the trend)")
lines(smooth.spline(time(soi), soi, spar = 0.5), lwd = 3, col = "blue")
lines(smooth.spline(time(soi), soi, spar = 1), lty = 2, lwd = 3,

col = "red")

Smoothing splines fit to the SOI series
     (spar=0.5 in blue to emphasise El Niño cycle, and spar=1 in red to emphasise the trend)
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The parameter spar is monotonically related to λ.
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