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Introduction (TS 1.0) Definition

Definition

Consider data of the same nature that have been observed at different
points in time
The mere fact that they are of the same nature means that they are
likely related in one way or another - let’s call those ‘correlations’
(an acceptable term in this context as we focus on this measure, at
least in this course)
This is in contrast with the usual “i.i.d.” assumptions associated with a
sample of outcomes of a random variable
This invalidates some of the techniques we know, and brings additional
difficulties, but also opportunities! (such as forecasting)

Definition: “The systematic approach by which one goes about answering
the mathematical and statistical questions posed by these time correlations
is commonly referred to as time series analysis.”
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Introduction (TS 1.0) Applications

Applications

The applications of time series are many, and crucial in many cases:

Economics: unemployment, GDP, CPI, etc . . .
Finance: share prices, indices, etc . . .
Medicine: COVID-19 cases and fatalities, biometric data for a patient
(blood pressure, iron levels, . . . ), etc . . .
Global warming: ocean temperatures, CO2 levels, concentration of
particulates in the atmosphere, sea levels, all in relation with another,
and with many others
Actuarial studies: frequency and severity of claims in a LoB, mortality
(at different ages, in different locations, . . .), superimposed inflation,
IBNR claims, etc . . .
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Introduction (TS 1.0) Process for time series analysis

Process for time series analysis

Sketch of process:

Careful examination of data plotted over time (Module 7)
Compute major statistical indicators (Modules 7 and 8)
Guess an appropriate method/model for analysing the data (Modules 8
and 9)
Fit and assess your model (Module 9)
Use your model to perform forecasts if relevant (Module 10)

We distinguish two types of approaches:

Time domain approach: investigate lagged relationships (impact of
today on tomorrow)
Frequency domain approach: investigate cycles (understand regular
variations)

In actuarial studies, both are relevant.
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Johnson & Johnson quarterly earnings per share

Johnson & Johnson quarterly earnings per share,
 84 quarters, 1960−I to 1980−IV
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What is the primary pattern?
Can you see any cyclical pattern as well?
How does volatility change over time (if at all)?6/61
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Global mean land-ocean temperature index

Global mean land temperature deviations (1880−2023) 
 in degrees centigrade (base period: 1991−2020)
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Can you see a trend? Are there periods of continuous increase?
What would be the main focus for global warming: trend or cycles?
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Global mean ocean temperature deviations (1880−2023) 
 in degrees centigrade (base period: 1991−2020)
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How do these graphs support the global warming thesis?
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Dow Jones Industrial Average
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How is this time series special?
What qualities would a good forecast model need to have?

9/61



Examples (TS 1.1) Analysis of two series together: El Niño & fish population

2 Examples (TS 1.1)
Johnson & Johnson quarterly earnings per share
Global mean land-ocean temperature index
Dow Jones Industrial Average
Analysis of two series together: El Niño & fish population
Signals within noise

10/61



Examples (TS 1.1) Analysis of two series together: El Niño & fish population

Analysis of two series together: El Niño & fish population

South Oscillation Index SOI (changes in air pressure, related to sea surface temperatures, in the central Pacific Ocean)
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How many cycles can you spot?
Is there a relationship between both series?
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Signals within noise
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Typically we only see the the signal obscured by noise.
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Basic models (TS 1.2) Preliminaries

Preliminaries

Our primary objective is to develop mathematical models that provide
plausible descriptions for sample data
A time series is a sequence of rv’s x1, x2, x3, . . . , denoted {xt}
In this course, t will typically be discrete and be ∈ N (or subset)
One set of observed values of {xt} is referred to as a realisation
Time series are usually plotted with time in the x -axis, with
observations connected at adjacent periods
Sampling rate must be sufficient, lest appearance of the data is
changed completely (aliasing; see also this which explains how car
wheels can appear to go backwards)
Smoothness of the time series suggests some level of correlation
between adjacent points, or in other words that xt depends in some
way on the past values xt−1, xt−2, . . .. → This is a good starting point
for imagining appropriate theoretical models!
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Basic models (TS 1.2) White noise - 3 scales :-)

White noise - 3 scales :-)

Let’s define wt as uncorrelated (over t) random variables wt with mean 0
and finite variance σ2

w . This is denoted

wt ∼ wn(0, σ2
w ),

and is called a white noise. Two special cases:

White independent noise: (or iid noise) additional assumption of iid,
denoted

wt ∼ iid(0, σ2
w ).

Gaussian white noise: further additional assumption of normal
distribution, denoted

wt ∼ iid N(0, σ2
w ).

Usually, time series are smoother than that (see bottom graph on the
next slide). Ways of introducing serial correlation and more
smoothness into time series include filtering and autoregression.13/61
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Basic models (TS 1.2) Gaussian white noise series and its 3-point moving average

Gaussian white noise series and its 3-point moving average
w <- rnorm(500, 0, 1) # 500 N(0,1) variates
plot.ts(w, ylim = c(-3, 3), main = "white noise")
v <- stats::filter(w, sides = 2, filter = rep(1/3, 3)) # moving average
plot.ts(v, ylim = c(-3, 3), main = "moving average")
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Basic models (TS 1.2) Filtering (and moving average)

Filtering (and moving average)

A series vt which is a linear combination of values of a more fundamental
time series wt is called a filtered series.

Example: 3-point moving average (see bottom of previous slide for
graph):

vt = 1
3(wt−1 + wt + wt+1).

In R, moving averages are implemented through the function

filter(x, filter, method = c("convolution"),sides = 2)

where x is the original series, filter is a vector of weights (in reverse
time order), method = c("convolution") is the default (alternative
is recursive), and where sides is 1 for past values only, and 2 if
weights are centered around lag 0 (requires uneven number of weights).

Moving average smoothers will be further discussed in Module 8.
15/61
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Basic models (TS 1.2) Autoregressions

Autoregressions

A series xt that depends on some of its past values, as well as a noise wt is
called an autoregression, because the formula looks like a regression—not
of independent variables, but of its own past values—hence autoregression.

Example: An autoregression of the white noise:

xt = xt−1 − 0.9xt−2 + wt .

If the autoregression goes back k periods, one needs k initial conditions
(filter will use 0’s otherwise).

In R, autoregressions are implemented through the function

filter(x, filter, method = c("recursive"),init)

where x is the original series, filter is a vector of weights (reverse
time order) and init a vector of initial values (reverse time order).

Autoregressions will be denoted AR(p) (details in Module 9).16/61



Basic models (TS 1.2) Autoregressions

# take this series:
wt <- 1:10
# a simple filter:
filter(wt, rep(1/3, 3), method = c("convolution"), sides = 1)

## Time Series:
## Start = 1
## End = 10
## Frequency = 1
## [1] NA NA 2 3 4 5 6 7 8 9
# an autoregression
filter(wt, rep(1/3, 3), method = c("recursive"))

## Time Series:
## Start = 1
## End = 10
## Frequency = 1
## [1] 1.000000 2.333333 4.111111 6.481481 9.308642 12.633745
## [7] 16.474623 20.805670 25.638012 30.972768

# note how the previous _results_ (rather than wt) are
# being used in the recursion

17/61



Basic models (TS 1.2) Autoregression examples

3 Basic models (TS 1.2)
Preliminaries
White noise - 3 scales :-)
Gaussian white noise series and its 3-point moving average
Filtering (and moving average)
Autoregressions
Autoregression examples
Random walk with drift

18/61



Basic models (TS 1.2) Autoregression examples

Autoregression examples
w <- rnorm(550, 0, 1) # 50 extra to avoid startup problems
x <- stats::filter(w, filter = c(1, -0.9), method = "recursive")[-(1:50)]
# remove first 50
plot.ts(x, ylab = "autogression", main = "Autoregressive series generated from model x_t=x_{t-1}-0.9x_{t-2}+w_t")
y <- stats::filter(w, filter = c(1, -0.3), method = "recursive")[-(1:50)]
# remove first 50
plot.ts(y, ylab = "autogression", main = "Autoregressive series generated from model x_t=x_{t-1}-0.3x_{t-2}+w_t")
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Basic models (TS 1.2) Autoregression examples

Autoregressive series generated from model x_t=x_{t−1}−0.9x_{t−2}+w_t
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Basic models (TS 1.2) Random walk with drift

Random walk with drift

The autoregressions introduced above are all centered around 0 for all
t (in the expected sense).
Assume now that the series increases linearly by δ (called drift) every
time unit.
The random walk with drift looks back only one time unit:

xt = δ + xt−1 + wt = δt +
t∑

j=1
wj for t = 1, 2, . . .

with initial condition x0 = 0 and with wt a white noise.
If δ = 0 this is simply called a random walk.
The term can be explained by visualising each increment from t to
t + 1 as a purely random step from wherever the process is at xt ,
ignoring what happened before.
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Basic models (TS 1.2) Random walk with drift

Random walk with drift δ = 0.2 and σw = 1
random walk
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Basic models (TS 1.2) Random walk with drift

Code used to generate the plot:
set.seed(155) # so you can reproduce the results
w <- rnorm(200)
x <- cumsum(w)
wd <- w + 0.2
xd <- cumsum(wd)
plot.ts(xd, ylim = c(-5, 55), main = "random walk", ylab = "")
lines(x, col = 4)
abline(h = 0, col = 4, lty = 2)
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Describing the behaviour of basic models (TS 1.3) Motivation

Motivation

In this section we would like to develop theoretical measures to help
describe how times series behave.

We are particularly interested in describing the relationships between
observations at different points in time.
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Describing the behaviour of basic models (TS 1.3) Full specification

Full specification

A full specification of a time series of size n at times t1, t2, . . . , tn for
any n would require the full joint distribution function

Ft1,t2,...,tn(c1, c2, . . . , cn) = Pr[xt1 ≤ c1, xt2 ≤ c2, . . . , xtn ≤ cn].

This is a quite unwieldy tool for analysis.
Examination of the margins Ft(x) = Pr[xt ≤ x ] and corresponding pdf
ft(x), when they exist, can be informative.
These are very theoretical. In practice, one often have only one
realisation for each xt so that inferring full distributions (let alone their
dependence structure) is simply impractical without tricks,
manipulations, and assumptions (some of which we will learn).

What would be the most basic descriptors?

24/61



Describing the behaviour of basic models (TS 1.3) Mean function

4 Describing the behaviour of basic models (TS 1.3)
Motivation
Full specification
Mean function
Autocovariance function
The autocorrelation function (ACF)

25/61



Describing the behaviour of basic models (TS 1.3) Mean function

Mean function

The mean function is defined as

µxt = E [xt ] =
∫ ∞

−∞
x ft(x)dx .

Examples:

Moving Average Series: we have

µvt = E [vt ] = 1
3 (E [wt−1] + E [wt ] + E [wt+1]) = 0.

Smoothing does not change the mean.
Random walk with drift: we have

µxt = E [xt ] = δt +
t∑

j=1
E [wj ] = δt.
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Describing the behaviour of basic models (TS 1.3) Autocovariance function

Autocovariance function

The autocovariance function is defined as the second moment product

γx (s, t) = Cov(xs , xt) = E [(xs − µxs)(xt − µxt)]

for all s and t. Note:

We will write γx (s, t) = γ(s, t) if no confusion is possible.
This is a measure of linear dependence.
Smooth series → large γ even for t and s far apart
Choppy series → γ is nearly zero for large separations
[ γx (s, t) = 0 =⇒ independence] ⇐= all variables are normal

For two series xt and yt this becomes

γxy (s, t) = Cov(xs , yt) = E [(xs − µxs)(yt − µyt)] ,

called cross-covariance function.
26/61



Describing the behaviour of basic models (TS 1.3) Autocovariance function

Examples of autocovariance functions

White noise: The white noise series wt has E [wt ] = 0 and

γw (s, t) = Cov(ws , wt) =
{

σ2
w s = t

0 s ̸= t
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Describing the behaviour of basic models (TS 1.3) Autocovariance function

Remember that if
U =

m∑
j=1

ajXj

and
V =

r∑
k=1

bkYk

then
Cov(U, V ) =

m∑
j=1

r∑
k=1

ajbkCov(Xj , Yk).

This will be useful for computing γ of filtered series.
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Describing the behaviour of basic models (TS 1.3) Autocovariance function

Moving average: A 3-point moving average vt to the white noise series wt
has

γv (s, t) = Cov(vs , vt) =


3
9σ2

w s = t
2
9σ2

w |s − t| = 1
1
9σ2

w |s − t| = 2
0 |s − t| > 2

This only depends on the time separation lag only, and not on the absolute
location along the series.

This is related to the concept of weak stationarity which will introduce later.
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Describing the behaviour of basic models (TS 1.3) Autocovariance function

Random walk: For the random walk xt =
∑t

j=1 wj we have

γx (s, t) = Cov(xs , xt)

= Cov

 s∑
j=1

wj ,
t∑

k=1
wk


= min{s, t}σ2

w .

Contrary to the previous examples, this depends on the absolute location
rather than the lag.

Also Var(xt) = tσ2
w increases without bound as t increases.
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Describing the behaviour of basic models (TS 1.3) The autocorrelation function (ACF)

The autocorrelation function (ACF)

The autocorrelation function (ACF) is defined as

−1 ≤ ρ(s, t) = γ(s, t)√
γ(s, s)γ(t, t)

≤ 1.

The ACF measures the linear predictability of the series at time t, say
xt , using only the value xs .
If we could do that perfectly, then ρ(s, t) ± 1 and

xt = β0 + β1xs

with β1 of same sign as ρ(s, t).

In the case of two series this becomes

−1 ≤ ρxy (s, t) = γxy (s, t)√
γx (s, s)γy (t, t)

≤ 1,

called cross-correlation function (CCF).31/61
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Stationary time series (TS 1.4) Strict stationarity

Strict stationarity

A strictly stationary times series is one for which the probabilistic
behaviour of every collection of values {xt1 , xt2 , . . . , xtk } is identical to that
of the time shifted set (for any h) {xt1+h, xt2+h, . . . , xtk+h}. That is,

Pr[xt1 ≤ c1, xt2 ≤ c2, . . . , xtk ≤ ck ]

= Pr[xt1+h ≤ c1, xt2+h ≤ c2, . . . , xtk+h ≤ ck ]

for all k = 1, 2, . . ., all the time points t1, t2, . . . , tk , all numbers
c1, c2, . . . , ck and all time shifts h = 0, ±1, ±2, . . .. This implies

identical marginals of dimensions < k for any shift h
constant mean: µxs = µxt ≡ µ
for k = 2, an autocovariance function that depends only on t − s:
γ(s, t) = γ(s + h, t + h)

We need something less constraining, that still allows us to infer
properties from a single series.32/61
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Stationary time series (TS 1.4) Weak stationarity

Weak stationarity

A weakly stationary time series, xt , is a finite variance process such that
1 the mean value function, µxt is constant and does not depend on time

t, and
2 the autocovariance function, γ(s, t) depends on s and t only through

their difference |s − t|.

Note:

We dropped full distributional requirements. This imposes conditions
on the first two moments of the series only.
Since those completely define a normal distribution, a (weak)
stationary Gaussian time series is also strictly stationary.
We will use the term stationary to mean weakly stationary; if a process
is stationary in the strict sense, we will use the term strictly stationary.

Stationarity means we can estimate those two quantities by
averaging of a single series. This is what we needed.
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Stationary time series (TS 1.4) Properties of stationary series

Properties of stationary series

Because of condition 1,
µt = µ.

Because of condition 2,

γ(t + h, t) = Cov(xt+h, xt) = Cov(xh, x0) = γ(h, 0) ≡ γ(h)

and the autocovariance of a stationary time series is then

γ(h) = Cov(xt+h, xt) = E [(xt+h − µ)(xt − µ)].

γ(h) is non-negative definite, which means that the variance of linear
combinations of variates xt will never be negative, that is,

0 ≤ Var(a1x1 + · · · + anxn) =
n∑

j=1

n∑
k=1

ajakγ(j − k).
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Stationary time series (TS 1.4) Properties of stationary series

Furthermore,

|γ(h)| ≤ γ(0) (the variance of the time series)

and
γ(h) = γ(−h).

The autocorrelation function (ACF) of a stationary time series becomes

−1 ≤ ρ(h) = γ(t + h, t)√
γ(t + h, t + h)γ(t, t)

= γ(h)
γ(0) ≤ 1.
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Examples of (non)-stationarity

White noise: We have
µwt = 0

and
γw (h) = Cov(wt+h, wt) =

{
σ2

w h = 0,
0 h ̸= 0,

,

which are both independent of time. Hence, the white noise satisfies both
conditions and is (weakly) stationary. Furthermore,

ρw (h) =
{

1 h = 0,
0 h ̸= 0.

If in addition wt ∼ iid N(0, σ2
w ), then it is also strictly stationary.
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Moving average: For the 3-point MA we have

µvt = 0 and γv (h) =


3
9σ2

w h = 0,
2
9σ2

w h ± 1,
1
9σ2

w h ± 2,
0 |h| > 2,

which are both independent of time. Hence, the 3-point MA satisfies both
conditions and is stationary. Furthermore,

ρv (h) =


1 h = 0,
2
3 h ± 1,
1
3 h ± 2,
0 |h| > 2,

which is symmetric around lag 0.
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Random walk: For the random walk model xt =
∑t

j=1 wj we have

µxt = δt,

which is a function of time t, and

γ(s, t) = min{s, t}σ2
w ,

which depends on s and t (not just their difference), so the random walk is
not stationary.

Furthermore, remember

Var(xt) = γx (t, t) = tσ2
w

which increases without bound as t → ∞.
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Trend stationarity

If only the second condition (on the ACF) is satisfied, but not the first
condition (on the mean value function), we have trend stationarity
This means that the model has a stationary behaviour around its trend.
Example: if

xt = α + βt + yt where yt is stationary,

then the mean function is

µx ,t = E [xt ] = α + βt + µy ,

which is not independent of time. The autocovariance function,

γx (h) = Cov(xt+h, xt) = E [(xt+h − µx ,t+h)(xt − µx ,t)]

= E [(yt+h − µy )(yt − µy )] = γy (h),

however, is independent of time.39/61
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Joint stationarity

Two time series, say, xt and yt , are said to be jointly stationary if they are
each stationary, and the cross-covariance function

γxy (h) = Cov(xt+h, yt) = E [(xt+h − µx )(yt − µy )]

is a function only of lag h. The corresponding cross-correlation function
(CCF) is

1 ≤ ρxy (h) = γxy (h)√
γx (0)γy (0)

≤ 1.
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Note that because Cov(x2, y1) and Cov(x1, y2) (for example) need not be
the same, it follows that typically

ρxy (h) ̸= ρxy (−h),

that is, the CCF is not generally symmetric about zero. However, we
have

ρxy (h) = ρyx (−h).
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Example of joint stationarity

Consider
xt = wt + wt−1 and yt = wt − wt−1,

where wt are independent with mean 0 and variance σ2
w . We have then

γx (0) = γy (0) = 2σ2
w

γx (−1) = γx (1) = σ2
w

γy (−1) = γy (1) = −σ2
w

and
γxy (−1) = −σ2

w , γxy (0) = 0, and γxy (1) = σ2
w ,

so that

ρxy (h) =


0 h = 0,

1/2 h = 1,
−1/2 h = −1,

0 |h| ≥ 2,

which depends only on the lag h, so both series are jointly stationary.42/61
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Prediction using cross-correlation

Prediction using cross-correlation: A lagging relation between two series
xt and yt may be exploited for predictions. For instance, if

yt = Axt−ℓ + wt ,

xt is said to lead yt for ℓ > 0, and is said to lag yt for ℓ < 0.

If the relation above holds true, then the lag ℓ can be inferred from the
shape of the autocovariance of the input series xt :

If wt is uncorrelated with xt then

γyx (h) = Cov(yt+h, xt) = Cov(Axt+h−ℓ + wt+h, xt)
= Cov(Axt+h−ℓ, xt) = Aγx (h − ℓ)

We know
γx (h − ℓ) ≤ γx (0),

and the peak of γyx (h) should be at h = ℓ. Also:
h will be positive if xt leads yt , negative if xt lags yt .43/61
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Here ℓ = 5 and xt leads yt :
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Prediction using cross−correlation

Note this example was simulated and uses the R functions lag and ccf:
x <- rnorm(100)
y <- stats::lag(x, -5) + rnorm(100)
ccf(y, x, ylab = "CCovF", type = "covariance")44/61
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Linear process

A linear process, xt , is defined to be a linear combination of white noise
variates wt , and is given by

xt = µ +
∞∑

j=−∞
Ψjwt−j ,

∞∑
j=−∞

|Ψj | < ∞

This is an important class of models because it encompasses moving
averages, autoregressions, and also the combination of both, called
autoregressive moving average (ARMA) processes which we will introduce
later.

Example:

Moving average The 3-point moving average has

Ψ0 = Ψ−1 = Ψ1 = 1/3

and is hence a linear process.45/61



Stationary time series (TS 1.4) Linear process

Properties of linear processes

The autocovariance function of a linear process is given by

γx (h) = σ2
w

∞∑
j=−∞

Ψj+hΨj for h ≥ 0.

It has finite variance if
∑∞

j=−∞ Ψ2
j < ∞.

In its most general form xt depends on the future (j < 0 components),
the present (j = 0) and the past (j > 0).

For forecasting, a model dependent on the future is useless. We will focus
on processes that do not depend on the future. Such processes are called
causal, that is,

xt is causal ⇐⇒ Ψj = 0 for j < 0,

which we will assume unless stated otherwise.
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Estimation of correlation (TS 1.5) Background

Background

One can very rarely hypothetise (specify) time series. In practice, most
analyses are performed using sample data.
Furthermore, one often has only one realisation of the time series.
This means that we don’t have n realisations of the time series to
estimate its covariance and correlation functions.
This is why the assumption of stationarity is essential: in this case,
the assumed ‘homogeneity’ of the data means we can estimate those
functions on one realisation only.
This also means that one needs to manipulate / de-trend series such
that they are arguably stationary before we can fit parameters to them
and use them for projections.
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Estimation of correlation (TS 1.5) Sample mean

Sample mean

If a time series is stationary the mean function µt = µ is constant so that
we can estimate it by the sample mean,

x = 1
n

n∑
t=1

xt .

This estimator is unbiased,
E [x ] = µ,

and has standard error the square root of

Var(x) = 1
n2 Cov

( n∑
t=1

xt ,
n∑

s=1
xs

)
= 1

n

n∑
h=−n

(
1 − |h|

n

)
γx (h).
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Estimation of correlation (TS 1.5) Sample autocovariance function

Sample autocovariance function

The sample autocovariance function is defined as

γ̂(h) = 1
n

n−h∑
t=1

(xt+h−x)(xt −x) with γ̂(−h) = γ̂(h) for h = 0, 1, . . . , n−1.

Note:

The estimator is biased.
The sum runs over a restricted range (n − h) because xt+h is not
available for t + h > n.
One could wonder why the factor of the sum is not 1/(n − h) (the
number of elements in the sum), but factor 1/n is not a mistake. It
ensures that the estimate of the variances of linear combinations,

V̂ar(a1x1 + · · · + anxn) =
n∑

j=1

n∑
k=1

ajak γ̂(j − k),

is non-negative.49/61
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Sample autocorrelation function

The sample autocorrelation function (SACF) is

ρ̂(h) = γ̂(h)
γ̂(0) .

Under some conditions (see book for details), if xt is a white noise, then for
large n, the SACF ρ̂(h) is approximately normally distributed with zero
mean and standard deviation given by

σρ̂(h) = 1√
n .
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Testing for significance of autocorrelation

The asymptotic result for the variance of the SACF means we can test
whether lagged observations are uncorrelated (which is a requirement for
white noise):

test for significance of the ρ̂’s at different lags: check how many ρ̂’s lie
outside the interval ±2/

√
n (a 95% confidence interval)

One should expect approximately 1 out of 20 to lie outside the interval
if the sequence is a white noise. Many more than that would invalidate
the whiteness assumption.
This allows for a recursive approach for manipulating / de-trending
series until they are white noise, called whitening.
The R function acf automatically displays those bounds with dashed
blue lines.
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SOI autocorrelation
acf(soi, main = "Sample autocorrelation function (SACF) of SOI")

0.0 0.5 1.0 1.5 2.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Sample autocorrelation function (SACF) of SOI

r <- round(acf(soi, 6, plot = FALSE)$acf[-1], 3) # first 6 sample acf values

## [1] 0.604 0.374 0.214 0.050 -0.107 -0.187

The SOI series is clearly not a white noise.
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plot(stats::lag(soi, -1), soi, main = "SOI pairs of values 1 month apart")
legend("topleft", legend = r[1])
plot(stats::lag(soi, -6), soi, main = "SOI pairs of values 6 months apart")
legend("topleft", legend = r[6])
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Scatterplots allow to have a visual representation of the dependence
(which may not necessarily be linear).53/61
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Sample cross-covariances and cross-correlations

The sample cross-covariance function is

γ̂xy (h) = 1
n

n−h∑
t=1

(xt+h − x)(yt − y),

where γ̂xy (−h) = γ̂yx (h) determines the function for negative lags.

The sample cross-correlation function is

−1 ≤ ρ̂xy (h) = γ̂xy (h)√
γ̂x (0)γ̂y (0)

≤ 1.

Note:

Graphical examinations of ρ̂xy (h) provide information about the leading
or lagging relations in the data.
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Testing for independent cross-whiteness

If xt and yt are independent linear processes then the large sample
distribution of ρ̂xy (h) has mean 0 and

σρ̂xy = 1√
n

if at least one of the processes is independent white noise.

This is very useful, and adds to the toolbox:

This provides feedback about the quality of our explanation of the
relationship between both time series: if we have explained the trends
and relationships between both processes, then their residuals should
be independent white noise.
After each improvement of our model, significance of the ρ̂xy ’s of the
residuals can be tested: if we have independent cross-whiteness then
we have a good model. If the ρ̂xy ’s are still significant (outside
the boundaries) then we still have things to explain (to add).55/61
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SOI and recruitment correlation analysis
acf(soi, 48, main = "Southern Oscillation Index")
acf(rec, 48, main = "Recruitment")
ccf(soi, rec, 48, main = "SOI vs Recruitment", ylab = "CCF")
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The SCCF (bottom) has a different cycle, and peak at h = −6
suggests SOI leads Recruitment by 6 months (negatively).56/61
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Idea of prewhitening

to use the test of cross-whiteness one needs to “prewhiten” at least
one of the series
for the SOI vs recruitment example, there is strong seasonality which,
upon removal, may whiten the series
we look at an example here that looks like the SOI vs recruitment
example, and show how this seasonality could be removed with the
help of sin and cos functions

Example:

Let us generate two series xt and yt , for t = 1, . . . , 120, independently
as

xt = 2 cos
(

2πt 1
12

)
+ wt1 and yt = 2 cos

(
2π[t + 5]) 1

12

)
+ wt2,

where {wt1, wt2; t = 1, . . . , 120} are all independent standard
normals.57/61
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this generates the data and plots it:
set.seed(1492)
num <- 120
t <- 1:num
X <- ts(2 * cos(2 * pi * t/12) + rnorm(num), freq = 12)
Y <- ts(2 * cos(2 * pi * (t + 5)/12) + rnorm(num), freq = 12)
par(mfrow = c(1, 2), mgp = c(1.6, 0.6, 0), mar = c(3, 3, 1, 1))
plot(X)
plot(Y)
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looking at the ACFs one can see seasonality
par(mfrow = c(3, 2), mgp = c(1.6, 0.6, 0), mar = c(3, 3, 1, 1))
acf(X, 48, ylab = "ACF(X)")
acf(Y, 48, ylab = "ACF(Y)")
ccf(X, Y, 24, ylab = "CCF(X,Y)")

0 1 2 3 4

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F
(X

)

Series  X

0 1 2 3 4

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F
(Y

)

Series  Y

−2 −1 0 1 2

−
0.

6
−

0.
2

0.
2

0.
6

Lag

C
C

F
(X

,Y
)

X & Y

furthermore the CCF suggests cross-correlation
even though the series are independent
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what we do now is to “prewhiten” yt by removing the signal from the
data by running a regression of yt on cos(2πt) and sin(2πt) and then
putting

ỹ = yt − ŷt ,

where ŷt are the predicted values from the regression.
in the R code below, Yw is ỹ

par(mgp = c(1.6, 0.6, 0), mar = c(3, 3, 1, 1))
Yw <- resid(lm(Y ~ cos(2 * pi * t/12) + sin(2 * pi * t/12), na.action = NULL))
ccf(X, Yw, 24, ylab = "CCF(X,Yw)", ylim = c(-0.3, 0.3))
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the updated CCF now suggests cross-independence, as it should60/61
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