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@ Introduction

© Data analysis and descriptive statistics (MW 3.1)

© Selected parametric claims size distributions (MW 3.2)
@ Fitting of distributions (MW3.2)

© Model selection (MW 3.3)

@ I Other advanced topics

@ Calculating within layers for claim sizes (MW 3.4)
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Introduction

Introduction

How to fit loss models to insurance data?
Peculiar characteristics of insurance data:

e complete vs incomplete set of observations

o left-truncated observations

e right-censored observations

o heavy tailed risks
Parametric distribution models

e model parameter estimation

e judging quality of fit

e model selection criteria

(graphical, score-based approaches, information criteria)

@ Concepts and R functions are demonstrated with the help of some data
sets
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@ Steps in fitting loss models to data
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S At
Steps in fitting loss models to data

©Q explore and summarise data
o graphical explorations
e empirical moments and quantiles
@ select a set of candidate distributions
e Pareto, log-normal, inverse Gaussian, gamma, etc.
© estimate the model parameters
e method of moments
e maximum likelihood (MLE)
e maximum goodness (MGE)
@ evaluate the quality of a given model
o graphical procedures (qq, pp plots, empirical cdf’s)
e score-based approaches (Kolmogorov-Smirnoff tests, AD tests,
chi-square goodness-of-fit tests)
o likelihood based information criteria (AIC, BIC)

@ determine which model to choose based on needs
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Introduction Insurance data

@ Introduction

@ Insurance data
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Introduction Insurance data

Complete vs incomplete data

@ complete, individual data
e you observe the exact value of the loss

@ incomplete data
e exact data may not be available
e in loss/claims data, these arise in the following situations:
@ observations may be grouped - observe only the range of values in which
the data belongs
@ presence of censoring and/or truncation
@ due to typical insurance and reinsurance arrangements such as
deductibles and limits
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Introduction Insurance data

Left-truncation and right-censoring

o left-truncated observation (e.g. excess / deductible)

e observation is left-truncated at ¢ if it is NOT recorded when it is below

¢ and when it is above c, it is recorded at its exact value.
@ right-censored observation (e.g. policy limit)

@ observation is right-censored at d if when it is above d it is recorded as
being equal to d but when it is below d it is recorded at its observed
value.

@ similarly, we can define right-truncated, left-censored, ...
@ of course, observations can be both left-truncated and right-censored;
this is often the case in actuarial data
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Introduction Insurance data

Zero claims

@ Significant proportions of zero claims are frequent, for a number of
reasons:
e Data is policy-based, not claims-based;
e Claim not exceeding deductible;
e Mandatory reporting of accidents;
e etc...
@ This complicates the fitting (parametric distributions often don't have
a flexible mass at 0, if at all)
@ Several possible solutions
e Adjust Y by mixing O with a parametric distribution
o Adjust the frequency of claims accordingly (hence ignoring 0 claims), but

this
e may understate the volatility of claims (the proportion of 0's may also be
random)
@ should be avoided if 0's are claims of no cost (rather than absence of
claim)
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Heavy tailed risks
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o Essentially, these are risks that can be very large.

@ This is translated by thick tails, that is, a density that goes to zero
slowly in the tails.

@ Typically, this means that the expectation of the excess over a
threshold increases with that threshold.

@ We will encounter such losses here, but a full treatment is deferred to
Module 6 (Extreme Value Theory).
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@ Data set used for illustrations
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Introduction Data set used for illustrations

Data set used for illustrations

Bivariate data set of Swiss workers compensation medical and daily
allowance costs:

Example of real actuarial data; see Avanzi, Cassar, and Wong (2011)
Data were provided by the SUVA (Swiss workers compensation insurer)
Random sample of 5% of accident claims in construction sector with
accident year 1999 (developped as of 2003)

Claims are (joint) medical costs and daily allowance costs

MELBOURNE
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Introduction Data set used for illustrations

SUVA <- read_excel("SUVA.x1s")
as_tibble(SUVA)

medcosts  dailyallow

407 0
12591 13742

269 0

142 0

175 0

208 839

47 0

59 0

191 7446

159 0

332 0

226 21894

453 1144

182 410

398 2089

876 132

462 4208 %
3359 4687 St
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Data analysis and descriptive statistics (MW 3.1)

© Data analysis and descriptive statistics (MW 3.1)

MELBOURNE
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Data analysis and descriptive statistics (MW 3.1)

It is essential, before any modelling is done, to make sure that one gets a
good sense of what the data look like.

@ For any type of data analysis, first thing to do is to summarise the data.
e summary statistics: mean, median, standard deviation, coefficient of
variation, skewness, quantiles, min, max, etc ...
e gives a preliminary understanding of the data
@ Visualisating the data is often even more informative:
e histogram, with associated kernel density
e empirical cdf, which can be compared to that of a normal cdf via Q-Q or
P-P plot
@ When data are heavy tailed it often helps to perform the above on the
log of the data (we can then compare the data to a lognormal)
@ Data collection procedures and standards should be understood
@ Any unusual feature (outliers, breaks, ...) should be investigated. If
possible, ask the claims adjusters or data owners about them
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© Data analysis and descriptive statistics (MW 3.1)
@ Raw data
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Data analysis and descriptive statistics (MW 3.1) Raw data
Visualise the SUVA raw data

fitdistrplus::plotdist (SUVA$medcosts, histo = TRUE, demp = TRUE)

Empirical density Cumulative distribution
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Data analysis and descriptive statistics (MW 3.1) Raw data

plotdist(SUVA$dailyallow, histo = TRUE, demp = TRUE)

Empirical density Cumulative distribution
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Data analysis and descriptive statistics (MW 3.1) Raw data

plotdist (SUVA$dailyallow [SUVA$dailyallow > 0], histo = TRUE,

demp = TRUE)
Empirical density Cumulative distribution
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A log transformation may help us see better what is happening.
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Data analysis and descriptive statistics (MW 3.1) Raw data

log of raw SUVA data

plotdist(log(SUVA$medcosts [SUVA$medcosts > 0]), histo = TRUE,
demp = TRUE)

Empirical density Cumulative distribution
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Data analysis and descriptive statistics (MW 3.1) Raw data

plotdist (log(SUVA$dailyallow[SUVA$dailyallow > 0]), histo = TRUE,
demp = TRUE)

Empirical density Cumulative distribution
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Data analysis and descriptive statistics (MW 3.1) Raw data

@ Medical costs are still skewed even after a log transformation, which
suggests that a very heavy tailed distribution might be necessary.

@ Daily allowance costs look symmetrical after the log transformation,
which suggests a lognormal (or similar) distribution might be
appropriate.

@ Removing 0's is especially important for the daily allowance claims
(and is necessary for taking the log anyway), as more than half of the
claims are 0.
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Data analysis and descriptive statistics (MW 3.1) Moments

© Data analysis and descriptive statistics (MW 3.1)

@ Moments
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Data analysis and descriptive statistics (MW 3.1) Moments

Moments

Moments of a distribution provide information:

@ The mean provides its location

@ The second moment leads to the variance, and the coefficient of
variation, which give an idea of the dispersion around the mean

@ Skewness is self-explanatory

@ Kurtosis provides an idea of how fat the tails are
o "Excess Kurtosis” is with respect to a normal/logonormal distribution for
raw/log claims, respectively
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Data analysis and descriptive statistics (MW 3.1) Moments

The following are also helpful:

@ Loss size index function

J§ 2d6(z) i Y
o~ 2d6(2) Y

for a € [0, 1]. Corresponds of the contribution of [0, y] to the overall
mean. (see also Pareto principle, whereby 80% of overall cost would be
due to 20% of (the most costly) claims)

@ Mean excess function

Z(6(y)) = In(er) =

Z?:l(yi - u)l{Yi>u}
Z?:l 1{Yi>u}

e(u) = E[Y; —ulY;>u] and &,(uv) =

This is useful for the analysis of large claims, and for the analysis of
reinsurance. Increasing values of the mean excess function indicate a
heavy tailed distribution (see also Module 6) [Note u = 0 leads tq
mean only when all claims are strictly positive.]
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Data analysis and descriptive statistics (MW 3.1) Moments
In R:

@ To get numbers:
o the function actuar: :emm provides empirical moments up to any order
e mean, stats::var and stats::sd provide mean, variance, and
standard deviation (unbiased versions)
e codes for the Loss size index function are provided in the illustration
e codes for the Mean excess function are also provided, but the graph is
most easily plotted with extRemes: :mrlplot as will be demonstrated
@ The function fistdistrplus:descdist provides a graph that shows
where the couple “skewness/kurtosis” lies, in comparison with its
theoretically possible locations for a certain number of distributions.
o the parameter boot allows for nonparametric bootstrapping of that
coordinate, which helps with the assessment of its potential variability
(it is sensitive to outliers, that is, not “robust”)
e method can be "unbiased" or "sample" for the unbiased or sample
versions of the moments
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Data analysis and descriptive statistics (MW 3.1) Moments

SUVA moments

Medical costs:
format (actuar: :emm(SUVA$medcosts, order = 1:3), scientific = FALSE)

## [1] v 1443.349" " 34268506.007" "1791560934502.502"
sd (SUVA$medcosts) /mean (SUVA$medcosts)

## [1] 3.93143

Daily allowance:
format (actuar: :emm(SUVA$dailyallow, order = 1:3), scientific = FALSE)

## [1] v 3194.15" " 172677852.63" "20364647975482.08"
sd(SUVA$dailyallow) /mean (SUVA$dailyallow)

## [1] 3.991459
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Data analysis and descriptive statistics (MW 3.1) Moments

Medical costs:

format (actuar: :emm(SUVA$medcosts [SUVA$medcosts > 0], order = 1:3),
scientific = FALSE)

## [1] 1492.765" " 35441771.887" "1852899392464.571"
sd (SUVA$medcosts [SUVA$medcosts > 0])/mean(SUVA$medcosts [SUVA$medcosts >
01)

## [1] 3.861552

Daily allowance:

format (actuar: :emm(SUVA$dailyallow [SUVA$dailyallow > 0], order = 1:3),
scientific = FALSE)

## [11 v 6760.322" " 365467411.472" "43101156679682.727"
sd(SUVA$dailyallow[SUVA$dailyallow > 0])/mean(SUVA$dailyallow[SUVA$dailyall
ol

## [1] 2.646343

e

MELBOURNE
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Data analysis and descriptive statistics (MW 3.1) Moments

SUVA Medical Costs skewness and kurtosis

fitdistrplus::descdist (SUVA$medcosts, boot = 1000)

Cullen and Frey graph
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Data analysis and descriptive statistics (MW 3.1) Moments
descdist (SUVA$medcosts [SUVA$medcosts > 0], boot = 1000)

Cullen and Frey graph
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Data analysis and descriptive statistics (MW 3.1) Moments

descdist (log(SUVA$medcosts [SUVA$medcosts > 0]), boot = 1000)

kurtosis
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Cullen and Frey graph
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Data analysis and descriptive statistics (MW 3.1) Moments
descdist(log(log(SUVA$medcosts [SUVA$medcosts > 0])), boot = 1000)

Cullen and Frey graph
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Data analysis and descriptive statistics (MW 3.1) Moments

SUVA Daily Allowance skewness and kurtosis

descdist (SUVA$dailyallow, boot = 1000)

Cullen and Frey graph
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Data analysis and descriptive statistics (MW 3.1) Moments
descdist (SUVA$dailyallow [SUVA$dailyallow > 0], boot = 1000)

Cullen and Frey graph
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Data analysis and descriptive statistics (MW 3.1) Moments

descdist (log(SUVA$dailyallow [SUVA$dailyallow > 0]), boot = 1000)

## summary statistics

## ——————

## min: 3.258097 max: 12.13806
## median: 7.474772

## mean: 7.63051

## estimated sd: 1.441014

## estimated skewness: 0.3378648
## estimated kurtosis: 3.259708

Note descdist also gives stats as above! (not shown on the previous slides)
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Data analysis and descriptive statistics (MW 3.1) Moments

kurtosis

10

Cullen and Frey graph

® Observation Theoretical distributions
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Good candidates seem to be lognormal, gamma, and potentially Weibull.
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Data analysis and descriptive statistics (MW 3.1) Moments

Loss index function

SUVA.MC.1if <- cumsum(sort(SUVA$medcosts))/sum(SUVA$medcosts)
plot(1:length(SUVA$medcosts)/length(SUVA$medcosts), SUVA.MC.1if,

xlab = "number of claims (in 100%)", ylab = "empirical loss size index fu
abline(h = 0.2, v = 0.8)
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Data analysis and descriptive statistics (MW 3.1) Moments

SUVA.DA.1if <- cumsum(sort(SUVA$dailyallow))/sum(SUVA$dailyallow)
plot(1:length(SUVA$dailyallow)/length(SUVA$dailyallow), SUVA.DA.1lif,

xlab = "number of claims (in 100%)", ylab = "empirical loss size index fu
abline(h = 0.2, v = 0.8)
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Data analysis and descriptive statistics (MW 3.1) Moments

Mean excess function

This function will return the mean excess function for an arbitrary vector of
thresholds u (for instance, 0, 100, 1000 and 10000 here)

mef <- function(x, u) {

mefvector <- c()

for (i in u) {

mefvector <- c(mefvector, sum(pmax(sort(x) - i, 0))/length(x[x >
i1))

}

return(mefvector)
}
mef (SUVA$medcosts, c(0, 100, 1000, 10000))
## [1] 1492.765 1709.148 6233.296 18156.631
mean (SUVA$medcosts)
## [1] 1443.349
mean (SUVA$medcosts [SUVA$medcosts > 0])
## [1] 1492.765

i
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Data analysis and descriptive statistics (MW 3.1) Moments

The graph is best done with extRemes: :mrlplot
mrlplot (SUVA$medcosts [SUVA$medcosts > 0])

Mean Excess
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Linear increases point towards a heavy tailed distribution. Here the
s.graph is biased because dominated by a few very large claims. MELBOURNE




Data analysis and descriptive statistics (MW 3.1) Moments

If we restrict the graph to range up to 20000 (which is roughly 99% of the
data) we get:
mrlplot (SUVA$medcosts [SUVA$medcosts > 0], xlim = c(250, 20000))
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Data analysis and descriptive statistics (MW 3.1) Moments

mrlplot (SUVA$dailyallow [SUVA$dailyallow > 0])
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Data analysis and descriptive statistics (MW 3.1) eITEIAES

© Data analysis and descriptive statistics (MW 3.1)

@ Quantiles
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Data analysis and descriptive statistics (MW 3.1) Quantiles

Quantiles
quantile (SUVA$dailyallow[SUVA$dailyallow > 0])

#it 0% 25, 50% 75% 100%
## 26.0 842.0 1763.0 4841.5 186850.0

One can also focus on particular quantiles:

quantile (SUVA$dailyallow[SUVA$dailyallow > 0], probs = c(0.75,
0.95, 0.99))

#i#t 75% 95% 99%
## 4841.5 25140.5 93285.0

Note this “corresponds” to (crude) empirical versions of Values at Risk
(“VaR"s).

(There are better ways of estimating VaRs though.)
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Data analysis and descriptive statistics (MW 3.1) Boxplots

© Data analysis and descriptive statistics (MW 3.1)

@ Boxplots
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Data analysis and descriptive statistics (MW 3.1) Boxplots

Boxplots

boxplot(list( Medical costs”™ = SUVA$medcosts[SUVA$medcosts >
0], "Daily allowance = SUVA$dailyallow[SUVA$dailyallow >
01
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Data analysis and descriptive statistics (MW 3.1) Boxplots

boxplot(list( Medical costs™ = log(SUVA$medcosts[SUVA$medcosts >
0]), "Daily allowance = log(SUVA$dailyallow[SUVA$dailyallow >
01>))
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Data analysis and descriptive statistics (MW 3.1) Log-log plots

© Data analysis and descriptive statistics (MW 3.1)

@ Log-log plots
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s
Log-log plots

The log-log plot is defined as

y — [log y,log(1 — G(y))],
where G is simply replaced by G for the empirical version.

Just as for the (empirical) mean-excess plots, a linear behaviour (now
decreasing) in the (empirical) log-log plot suggests a heavy-tailed
distribution. Typical log-log plots are as in Figure 3.19 of Wuthrich (2023).
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Data analysis and descriptive statistics (MW 3.1) Log-log plots

SUVA log-log plots

emplot (SUVA$medcosts [SUVA$medcosts > 0], alog = "xy", labels = TRUE)
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Data analysis and descriptive statistics (MW 3.1) Log-log plots

emplot (SUVA$dailyallow[SUVA$dailyallow > 0], alog = "xy", labels = TRUE)
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Again, medical costs are a good candidate for heavy tailed distributions
(graph is more linear, except at the very end), whereas daily allowance 1@!

Jmore reasonably behaved (graph is more concave).
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Selected parametric claims size distributions (MW 3.2)

© Selected parametric claims size distributions (MW 3.2)
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Selected parametric claims size distributions (MW 3.2) BEEETET S Tl B ER TR 4

© Selected parametric claims size distributions (MW 3.2)

@ Parametric models for severity Y
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Selected parametric claims size distributions (MW 3.2) BREEIETNETN I CERIEEEV (WA 2

Gamma

e We shall write Y ~ T (a, () if density has the form

gly) = I_ﬁ(a)yaleﬁy, fory >0; o,8 > 0.
@ Mean: E(Y)=qa/p
e Variance: Var (Y) = a//3?
@ Skewness: ¢y = 2/y/a [positively skewed distribution]

e Mgf: My (t) = (/Bﬁ_t>a provided t < 3 .
e Higher moments: E (Yk) = W

@ Special case: When a =1, we have Y ~ Exp ()
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Selected parametric claims size distributions (MW 3.2) Parametric models for severity Y

Inverse Gaussian

o We shall write Y ~ IG (a, 8) if density has the form

—3/2 a2
g(y) = 2 — exp l—(aﬁy)] , for y > 0; a, 3 > 0.

V2B 28y

@ Mean: E(Y)=a/p

e Variance: Var (Y) = a/f?

@ Skewness: ¢y = 3/y/a [positively skewed distribution]

e Mgf: My (t) = e (1-v1-2t/8) provided t < (/2.

@ The term “Inverse Gaussian” comes from the fact that there is an
inverse relationship between its cgf and that of the Gaussian
distribution, but NOT from the fact that the inverse is Gaussian!

MELBOURNE
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Weibull

e We shall write Y ~ Weibull (7, ¢) if density has the form

g(v) = (c7)(cy)" texp{—(cy)}, for y > 0; @, 3 > 0.

Note G(u) =1 — exp{—(cy)"}.
e Mean: E(Y) = M
e Variance: Var(Y) = % — 3
@ Skewness: ¢y = {w — 3,U,y0'%/ — ;r:‘,} /U?,
e Mgf: does not exist for 7 < 1 and t > 0.
o Higher moments: E (Yk> = w

o Note: if Z ~ expo(1) then ZY/7 /c ~ Weibull (7, c).
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Lognormal

o We shall write Y ~ LN (i, 02) and we have
log Y ~ N (u,0?).
o Mean: E(Y) = exp{u+ d?/2}
e Variance: Var (Y) = exp{2u + 02} (exp{c?} — 1)

o Skewness: sy = (exp{c?} + 2) (exp{o?} — 1)1/2
o Mgf: does not exist for t > 0.

e
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Log-gamma

e We shall write log Y ~ I (7, ¢) and we have

.,
g(y) = ——(logy)"ty~ () for y > 0; @, B > 0.

()
e Mean: E(Y) = (Cfly forc>1
e Variance: Var (Y) = (szy — 3 for ¢ >2

Skewness: ¢y = {(Cig')’y —3pyod — /ﬁ,} /oy
Mgf: does not exist for t > 0.

Higher moments: E (Yk) = (ka)7 for c > k

Special case: When a =1, we have Y ~ Exp ()

e
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Pareto Distribution

e We shall write Y ~ Pareto (0, o) if density has the form

—(a+1)
aly
e Z >
g(y)—9<e) fory >0

e Mean: E(Y)=0%,a>1

e Variance: Var (Y) = Hzm, a>2
1/2
@ Skewness: ¢y = 22}7:?) (O‘T_z) / ,a>3

o Mgf: does not exist for t > 0
@ Translated Pareto: distribution of Y =Y —

48/182
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© Selected parametric claims size distributions (MW 3.2)

@ Extreme Value Theory
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Extreme Value Theory

Note that the following topics (which appear briefly in MW 3) will be
covered in Module 6 on Extreme Value Theory:

@ regular variation at infinity and tail index (page 58-59+)

e Hill plot (page 75+)
o Generalised Pareto (“GP") and Generalised Extreme Value (“GEV")

distributions

MELBOURNE
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@ Fitting of distributions (MW3.2)
@ Introduction
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Introduction

@ By now, the modeller should have identified some candidate parametric
distributions for their data set.

e Example: for SUVA$dailyallow, based on data numerical and graphical
explorations, we decided to try gamma, lognormal, and Weibull.

@ In order to be able to compare them, that is, assess their goodness of
fit (which will be discussed in the next section), one must find
numerical values for the parameters of the candidates.

@ The parameter values we will choose will depend on some criterion,
which the modeller can choose. In some cases, they may even want to
follow different approaches and choose which is the one they think
works best for their purposes.
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e Fitting criteria include:
e moment matching: choose the m parameters such that the first m
moments match
e maximum likelihood: choose the parameters such that the overall
likelihood that the model generated the data is maximal
e " maximum goodness: choose the parameters such that some goodness
of fit criterion is maximised
@ We will discuss the first two here, and the third after the goodness of

fit section (for obvious reasons).
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@ There are other criteria which we will not discuss in details, such as:

e quantile matching: choose parameters such that empirical quantiles
match theoretical quantiles

o least squares: choose parameters such that the “sum of squares” is
minimal (this corresponds to maximum likelihood for Gaussian random
variables)

e so-called “minimum distance estimation”, which minimises distances
between certain theoretical and empirical functions; see actuar: :mde.
For instance the actuar Cramér-von Mises method minimises the
(weighted) distance between empirical and theoretical cdf's

e score functions such as considered in probabilistic forecasting; see, e.g.,
package scoringRules in Jordan, Kriiger, and Lerch (2019)

52/182



Introduction
R and technical notes

@ The function MASS: :fitdist is standard, and uses by default MLE
via the optim function.

@ The package fitdistrplus allows other fitting criteria (such as
method of moments and maximum goodness), and also allows for the
user to supply their own optimisation function.

@ Distributions are coded in the following way. For distribution foo:

e dfoo is the density (pdf) of foo

e pfoo is the distribution function (cdf) of foo
e gfoo is the quantile function of foo

e rfoo is the random number generator of foo

@ This 1link provides a very comprehensive list of available distributions
in R. As a user you can define any distribution yourself, and this syntax
will be recognised by some functions.

@ The package actuar provides additional distributions. It also
automates the transformation of such distribution functions
in presence of left-truncation and right-censoring (more later).
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@ Fitting of distributions (MW3.2)

@ Moment matching estimation (MME)
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Moment matching estimation (MME)

@ This is quite straightforward; for a distribution of m parameters:
e choose m moments you care about (usually the first m moments around
the origin or the mean);
o build a system of m equations (for the m parameters) matching
empirical moments of your choice;
o solve the system (might require a computer or some numerical
techniques if the equations are not linear).
@ In R, set the argument method to mme in the call to fitdist
e For distributions of 1 and 2 parameters, mean and variances are matched
e For a certain number of distributions a closed form formula is used. For
the others, equations are solved numerically using optim and by
minimising the sum of squared differences between theoretical and
observed moments.
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MME for SUVA

fit.lnorm.mme <- fitdist(log(SUVA$dailyallow[SUVA$dailyallow >
0]), "lnorm", method = "mme", order = 1:2)
fit.lnorm.mme$estimate

##  meanlog sdlog
## 2.0146490 0.1871132

fit.1lnorm.mme$loglik

## [1] -1959.06

fit.lnorm.mme2 <- fitdistrplus::mmedist(log(SUVA$dailyallow[SUVA$dailyallowu
0]), "lnorm", order = 1:2)
fit.lnorm.mme2$estimate

##  meanlog sdlog
## 2.0146490 0.1871132

fit.lnorm.mme2$loglik

## [1] -1959.06

55/182



RGBT EN(VAVERIBE  Moment matching estimation (MME)

fit.gamma.mme <- fitdist(log(SUVA$dailyallow[SUVA$dailyallow >
0]), "gamma", method = "mme", order = 1:2)
fit.gamma.mme$estimate

## shape rate
## 28.065081 3.678009

fit.gamma.mme$loglik

## [1] -1951.838

# function to calculate sample Taw moment

memp <- function(x, order) emm(x, order)

fit.weibull.mme <- fitdist(log(SUVA$dailyallow[SUVA$dailyallow >
0]), "weibull", method = "mme", memp = memp, order = c(1,
2))

fit.weibull.mme$estimate

## shape scale
## 6.172910 8.212158

fit.weibull.mme$loglik

## [1] -2020.119 ¢ Y8

MELBOURNE
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@ Fitting of distributions (MW3.2)

@ Maximum likelihood estimation (MLE)
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Maximum likelihood estimation (MLE)

@ The likelihood for a statistical model gives an indication of how likely it
is that this data set was generated, should the model be correct.
@ If there is no censoring or truncation, we have

L(O:x) =[], f(xi0).

Obviously, this is a function of the parameter (vector) 6 = (61, ...,0m),
for a given set of observations, denoted x = (x1, ..., Xp).
o The value 0 that maximises the likelihood is called the maximum
likelihood estimator (MLE).
@ Often, it is more convenient to maximise the log-likelihood function
given by
£(0;x) =log L(6;x).

This avoids issues of underflow for L when n is large.

T or
MELBOURNE
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Note:

@ The formulation of a likelihood in presence of left-tuncation and
right-censoring will be covered in a later section.

e Sometimes, MLEs match MMEs (check book).

@ MLEs have nice properties (such as asymptotic normality, which is one
way to estimate standard errors; see later).

MELBOURNE
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MLE for SUVA

fit.lnorm.mle <- fitdist(log(SUVA$dailyallow[SUVA$dailyallow >
0]), "lnorm", method = "mle")
fit.lnorm.mle$estimate

##  meanlog sdlog
## 2.0140792 0.1918442

fit.lnorm.mle$loglik

## [1] -1958.359

fit.gamma.mle <- fitdist(log(SUVA$dailyallow[SUVA$dailyallow >
O] ) s uga_mmau)
fit.gamma.mle$estimate

## shape rate
## 27.825788 3.646718

fit.gamma.mle$loglik

## [1] -1951.818

e
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fit.weibull.mle <- fitdist(log(SUVA$dailyallow[SUVA$dailyallow >
0]), "weibull", method = "mle")
fit.weibull.mle$estimate

## shape scale
## 5.527347 8.231313

fit.weibull.mle$loglik

## [1] -2003.26

summary (fit.weibull.mle)
y

## Fitting of the distribution ' weibull ' by maximum likelihood
## Parameters :

## Loglikelihood: -2003.26 AIC: 4010.519 BIC: 4020.524

## Correlation matrix:

## shape scale

## shape 1.0000000 0.3301744

## scale 0.3301744 1.0000000
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Parameter uncertainty

@ The estimation of parameters is not perfect.

@ The mere fact that different methods lead to different estimates makes
that point obvious.

@ This will always be true even if we are fitting the right distribution, just
because we have only a finite sample of data

@ How far can we be from the “truth” ?

@ There are different ways of answering that question, two of which we
discuss here:

e the Wald approximation: standard errors via the Hessian for MLEs
e bootstrap
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Hessian matrix

The score (or gradient) vector consists of first derivatives

o\ [0L(0;x) oL (6;x)\’
S(G,x)-( 90, " 00, ),

so that the MLE satisfies F.O.C. S (5 x) =0=(0,..,0). -The mx m
Hessian matrix for ¢ (6; x) is defined by

020 (0;x) 020 (0;x)
e |
H (9, X) = W - : . :
020 (0;x) o 020 (0;x)
00,001 062,

@ This Hessian is used to estimate Var (5 .

@ Minus the expected value of this is called the (expected) Fisher
62/182 information.




R
The Wald approximation

It is well-known that a consistent estimator for the covariance matrix
Var (9) is given by the inverse of the negative of this Hessian matrix:

Var (0) > Var (6) = | ~E[H (6:x)1]

The square root of the diagonal elements of this covariance estimate give
the standard errors of the MLE estimates. Note:

@ “Consistent” means it converges in probability to the value being
estimated.

o When n — oo, the distribution of 8 is asymptotically normal.

@ Note these are asymptotic results. Furthermore, their quality also
strongly depends on the data, the distribution, and the parametrisation
of the distribution.
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Standard errors for SUVA data

Note these are obviously unavailable for MMEs. For MLEs:

fit.lnorm.mle$sd

## meanlog sdlog
## 0.005786951 0.004091492

summary (fit.lnorm.mle)

## Fitting of the distribution ' lnorm ' by maximum likelihood
## Parameters :

## Loglikelihood: -1958.359  AIC: 3920.717 BIC: 3930.722
## Correlation matrix:

## meanlog sdlog

## meanlog 1.000000e+00 1.345897e-12

## sdlog  1.345897e-12 1.000000e+00
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fit.gamma.mle$sd

## shape rate
## 1.1799881 0.1560434

summary (fit.gamma.mle)

## Fitting of the distribution ' gamma ' by maximum likelihood
## Parameters :

## Loglikelihood: -1951.818 AIC: 3907.636 BIC: 3917.641
## Correlation matrix:

## shape rate

## shape 1.00000 0.99103

## rate 0.99103 1.00000

e
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fit.weibull.mle$sd

## shape scale
## 0.12127037 0.04760155

summary (fit.weibull.mle)

## Fitting of the distribution ' weibull ' by maximum likelihood
## Parameters :

## Loglikelihood: -2003.26  AIC: 4010.519 BIC: 4020.524

## Correlation matrix:

## shape scale

## shape 1.0000000 0.3301744

## scale 0.3301744 1.0000000
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@ Fitting of distributions (MW3.2)

@ "I Bootstrap
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"4 Bootstrap

@ It is advisable to compare the Wald approximation to the ones
obtained using bootstrap procedures.

@ Also, the Wald approximation assumes elliptical loglikelihood contours
(related to the Gaussian asymptotic result), and hence having a look at
the loglikelihood contours is also informative.

@ More generally, one might want to simply use bootstrap to compute
confidence intervals on parameters (or any function of those
parameters).

e InR:

e llplot will provide the loglikelihood contours; and
e bootdist will provide bootstrap results on a fitted object.

67/182



Fitting of distributions (MW3.2)

X4 SUVA contours and bootstrap results

1lplot(fit.lnorm.mle)

sdlog
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fit.lnorm.mle.boot <- bootdist(fit.lnorm.mle, niter = 1001)
fit.lnorm.mle.boot$fitpart # the Wald approzimation

## Fitting of the distribution ' lnorm ' by maximum likelihood
## Parameters:

summary (fit.lnorm.mle.boot)

## Parametric bootstrap medians and 95% percentile CI
#H Median 2.5% 97.5Y%
## meanlog 2.0140625 2.0034279 2.0247166
## sdlog 0.1916657 0.1831405 0.2002895

# CI to be compared with
fit.lnorm.mle$estimate + cbind(estimate = 0, ~2.5J% = -1.96 *
fit.lnorm.mle$sd, ~97.5% = 1.96 * fit.lnorm.mle$sd)

#it estimate 2.5% 97.5%
## meanlog 2.0140792 2.0027368 2.0254216
## sdlog 0.1918442 0.1838249 0.1998635
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plot(fit.lnorm.mle.boot)

Bootstrapped values of parameters
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1lplot(fit.gamma.mle)

rate
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fit.gamma.mle.boot <- bootdist(fit.gamma.mle, niter = 1001)
fit.gamma.mle.boot$fitpart # the Wald approzimation

## Fitting of the distribution ' gamma ' by maximum likelihood
## Parameters:

summary (fit.gamma.mle.boot)

## Parametric bootstrap medians and 95% percentile CI
it Median 2.5% 97.5%
## shape 27.802748 25.683850 30.278533
## rate  3.646982 3.352406 3.967813

# CI to be compared with
fit.gamma.mle$estimate + cbind(estimate = 0, “2.5)," = -1.96 *
fit.gamma.mle$sd, "97.5% = 1.96 * fit.gamma.mle$sd)

#i# estimate 2.5% 97.5%

## shape 27.825788 25.513012 30.138565
## rate 3.646718 3.340873 3.952563
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plot(fit.gamma.mle.boot)

Bootstrapped values of parameters
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1lplot(fit.weibull.mle)
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fit.weibull.mle.boot <- bootdist(fit.weibull.mle, niter = 1001)
fit.weibull.mle.boot$fitpart # the Wald approxzimation

## Fitting of the distribution ' weibull ' by maximum likelihood
## Parameters:

summary (fit.weibull.mle.boot)

## Parametric bootstrap medians and 95% percentile CI
#H Median 2.5%  97.5%
## shape 5.535608 5.283625 5.782868
## scale 8.232019 8.132361 8.322062

# CI to be compared with
fit.weibull.mle$estimate + cbind(estimate = 0, ~2.5% = -1.96 *
fit.weibull.mle$sd, "97.5% = 1.96 * fit.weibull.mle$sd)

#it estimate 2.5% 97.5%
## shape 5.527347 5.289657 5.765037
## scale 8.231313 8.138014 8.324612
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plot(fit.weibull.mle.boot)

Bootstrapped values of parameters
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Y4 Confidence intervals on other quantities

@ One can readily obtain confidence intervals on quantiles with the
quantile function and a bootdist object

@ More generally, this can be done of any function; see Delignette-Muller
and Dutang (2015).

e
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quantile(fit.gamma.mle.boot)

## (original) estimated quantiles for each specified probability (non-censc
## Median of bootstrap estimates

## p=0.1 p=0.2 p=0.3 p=0.4 p=0.5 p=0.6
## estimate 5.847375 6.395627 6.812383 7.182909 7.541084 7.910279
## p=0.7 p=0.8 p=0.9

## estimate 8.320529 8.817151 9.53615

#i#

## two-sided 95 % CI of each quantile

e
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Coding of censored data in R

@ We need two columns named left and right.
@ The left column contains:
o NA for left censored observations
e the left bound of the interval for interval censored observations
e the observed value for non-censored observations
@ The right column contains:
o NA for right censored observations
o the right bound of the interval for interval censored observations
e the observed value for non-censored observations
@ This corresponds to the coding names interval2 in function Surv of

the package survival
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In other words, (left,right) corresponds to

(a,a) for an exact observation at a (= a)
(a,NA) for a right censored observation at a (> a)
(NA,b) for a left censored observation at b (< b)

(> aand <b)

80/182
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For example, consider twenty values from the canlifins of the

CASdatasets package (see Delignette-Muller and Dutang (n.d.))

exitage <- c(81.1, 78.9, 72.6, 67.9, 60.1, 78.3, 83.4, 66.9,
74.8, 80.5, 75.6, 67.1, 75.3, 82.8, 70.1, 85.4, 74, 70, 71.6,

76.5)
death <- c(0, 0, 1, 0, 0, 0, 0, 1, 0, 0, O, O, O, O, 1, 1, O,

0, 0, 0)

@ the first value is someone who exited the study at 81.1, but not via
death, so it is a right-censored observation

@ this needs to be coded:
o left: 81.1
e right: NA
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Overall, this becomes:

casdata <- cbind.data.frame(left = exitage, right = exitage)
casdata$right [death == 0] <- NA # the censored wvalues
print (casdata)

(Note: How to use the function Surv() is explained in Delignette-Muller
and Dutang, n.d.)

e
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Censored data can be plotted raw. ..
plotdistcens(casdata, NPMLE = FALSE)

Cumulative distribution
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or as an empirical distribution
plotdistcens(casdata)

Cumulative distribution
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Censored data

Note that there are some technical subtleties with creating empirical
distributions for censored data. This is out of scope, but details can be
found in Delignette-Muller and Dutang (n.d.), Delignette-Muller and

Dutang (2015), and references therein. ey
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Fitting censored data

@ Again, this is easily done with associated foocens functions

cas.gamma.fit <- fitdistcens(casdata, "gamma')
summary (cas.gamma.fit)

## Fitting of the distribution ' gamma ' By maximum likelihood on censored
## Parameters

## Loglikelihood: -20.0179  AIC: 44.0358 BIC: 46.02727

## Correlation matrix:

## shape rate

## shape 1.0000000 0.9983071

## rate 0.9983071 1.0000000

@ Commands like cdfcompcens bootdistcens also exist.

@ However, gofstat is not available as there do not exist results general
enough to be coded in the package. Specific results for right-censored
variables do exist, though.
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plot(cas.gamma.fit)
Empirical and theoretical CDFs Q-Q plot
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Left-truncation and R

@ Unfortunately there is no pre-coded function for left-truncation.

@ It can be done manually, with care.

e With left-truncation, the key (from definition) is that an observation
will exist, if, and only if, it was beyond the truncation point. This
means that the probability/likelihood associated to each observation is
conditional on it being more than the truncation point.

@ What follows is generalised to left- and right- truncation, and is taken
from Delignette-Muller and Dutang (n.d.).

@ For X before truncation, the /-left-truncated, u-right-truncated variable
Y has density

gy(y) =

% ifl<x<u
0 otherwise
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As an example in R, the d and p functions of a truncated exponential can
be coded as:

dtexp <- function(x, rate, low, upp) {
PU <- pexp(upp, rate = rate)
PL <- pexp(low, rate = rate)
dexp(x, rate)/(PU - PL) * (x >= low) * (x <= upp)
}
ptexp <- function(q, rate, low, upp) {
PU <- pexp(upp, rate = rate)
PL <- pexp(low, rate = rate)
(pexp(q, rate) - PL)/(PU - PL) * (q >= low) * (q <= upp) +
1 = (q > upp)

e

MELBOURNE
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If we generate 200 such truncated variables:

set.seed(22042021)

n <- 200 # number of observations

x <- rexp(n) # simulating sample of z's

y <- x[x > 0.5 & x < 3] # truncating to get sample of y's

and then fit them with either left- and right- truncation estimated from the
data:

fit.texp.emp <- fitdist(y, "texp", method = "mle", start = list(rate = 3),
fix.arg = list(low = min(y), upp = max(y)))
or in an informative way (i.e. we know what the bounds are):
fit.texp.inf <- fitdist(y, "texp", method = "mle", start = list(rate = 3),

fix.arg = list(low = 0.5, upp = 3))

e

MELBOURNE
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gofstat(list(fit.texp.emp, fit.texp.inf), fitnames = c("unknown bounds",
"known bounds"))

## Goodness-of-fit statistics

## unknown bounds known bounds
## Kolmogorov-Smirnov statistic 0.07546318  0.06747339
## Cramer-von Mises statistic 0.13211330 0.09999122
## Anderson-Darling statistic Inf 0.59863722
##

## Goodness-of-fit criteria

## unknown bounds known bounds
## Akaike's Information Criterion 165.3424 169.7301
## Bayesian Information Criterion 168.1131 172.5007

8
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cdfcomp(list(fit.texp.emp, fit.texp.inf), legendtext = c("unknown bounds",
"known bounds"))

Empirical and theoretical CDFs
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Likelihood formulation with both left-truncation and
right-censoring

@ For our purposes, we shall represent our set of observations as
(8, %5, ))

where
o tj is the left truncation point;
e X; is the claim value that produced the data point; and
e J; is indicator whether limit has been reached.
o For example:
e (50,250,0)
e (100,1100,1)
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Densities will be as follows:
oy Fogi0) 1" 1 F(x:6)]"
Hox =11, [ww)] 11, [ww] '

The contribution to the likelihood function for a data point where the limit
has not been reached is given by

A

The contribution to the likelihood function for a data point where the limit
has been reached is given by

ll_F(XJ)r

1-F(t)

Note here that the policy limit if reached would be equal to x; — t;.

MELBOURNE
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When truncation and censoring levels are the same
everywhere

@ In R, the approach will be to code a left-truncated function, and then
use the foocens functions.

@ Let us do this on a gamma distribution:

dtgamma <- function(x, rate, shape, low) {
PL <- pgamma(low, rate
dgamma(x, rate = rate, shape =
}

rate, shape =

shape)

shape)/(1 - PL) * (x >= low)

ptgamma <- function(q, rate, shape, low) {
PL <- pgamma(low, rate
(pgamma(q, rate =

rate, shape =
low)

rate, shape = shape)

shape) - PL)/(1 - PL) * (q >=

We initially assume that the truncation and censoring levels
everywhere.

are the same
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For instance,

@ truncated at 2
@ censored at 20

for all data points.

Simulating one such dataset:

set.seed(22042021)

n <- 2000 # number of observations

x <- rgamma(n, shape = 2, rate = 0.2) # simulating sample of z's
x <- x[x > 2] # left-truncation at 2

n - length(x) # number of observations that were truncated

## [1] 123

censoring <- x > 20 # we will censor at 20
x[x > 20] <- 20 # censoring at 20

,Ejgl
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Transforming this into the right format:

censoring[censoring == FALSE] <- x[censoring == FALSE]
censoring[censoring == TRUE] <- NA
xcens <- cbind.data.frame(left = x, right = censoring)

And fitting:

# Not allowing for truncation:

fit.gamma.xcens <- fitdistcens(xcens, "gamma", start = list(shape = mean(xc
rate = mean(xcens$left)/var(xcens$left)))

summary (fit.gamma.xcens)

## Fitting of the distribution ' gamma ' By maximum likelihood on censored
## Parameters

## Loglikelihood: -5412.521  AIC: 10829.04 BIC: 10840.12

## Correlation matrix:

## shape rate

## shape 1.0000000 0.9208904
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# Allowing for truncation

fit.tgamma.xcens <- fitdistcens(xcens, "tgamma", start = list(shape = mean(
rate = mean(xcens$left)/var(xcens$left)), fix.arg = list(low = min(xcens

summary (fit.tgamma.xcens)

## Fitting of the distribution ' tgamma ' By maximum likelihood on censorec
## Parameters

## Fixed parameters:

## Loglikelihood: -5340.151 AIC: 10684.3 BIC: 10695.38

## Correlation matrix:

## shape rate

## shape 1.0000000 0.9401461

## rate 0.9401461 1.0000000

NA
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cdfcompcens (list(fit.gamma.xcens, fit.tgamma.xcens), legendtext = c("Not al
"Allowing for truncation"))

Empirical and theoretical CDFs
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When truncation and censoring levels vary

In real life, an insurance product would have more than one level of
deductibles and limits to suit different policyholders. Simulating another
dataset:

set.seed(2022)

n <- 3006 # number of observations 9 xT 334

orig_x <- rgamma(n, shape = 2, rate = 0.2) # simulating sample of z's
deductibles <- rep(c(rep(1, 3), rep(3, 3), rep(5, 3)), 334)

limits <- rep(c(15, 20, 30), 3 * 334) + deductibles

# limit is on payment, mot Taw loss

e
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Manually applying the deductibles and limits:

x <- orig_x

censored <- x>limits # we will censor at the limits
x[censored] <- limits[censored] # censoring at the limits
# the above takes only elements of = which have TRUE
# in the vector censored

#

deducted <- x > deductibles

x <- x[deducted] # left-truncation at all points

# here the truncated observations disappear!
n-length(x) # observations that were truncated

## [1] 431
# that many were removed
#

claims <- data.frame(x = x, #
deduct = deductibles[deducted], #
1limitI = censored[deducted])

5y

RS
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Preliminary analysis:

(note that there are no claims less than 1)

claims <- claims[sample(l:nrow(claims), nrow(claims)), ]
# we pretend we do mnot know how the data was generated

head(claims)

x deduct limitl
444 17.196879 1 FALSE
1733  13.964488 3 FALSE
1414 3.521077 1 FALSE
1407 15.488936 1 FALSE
1138 11.509672 3 FALSE
1977 4.875571 3 FALSE

hist(claims$x, breaks = 100)

# Note this includes right-censored observations But not

# the truncated wvalues
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Histogram of claims$x

Frequency
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| |
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claims$x g;);
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Preparing our joint log-likelihood function:

Here, we are minimising a negative log-likelihood instead of maximising a
log-likelihood.

negloglik <- function(pdf, cdf, param, x, deduct, limitI) {
# Function returns the negative log likelihood of the

censored and truncated dataset. Each data point's

contribution to the log likelihood depends on the

theoretical distribution pdf and cdf and also the

deductible and limit wvalues to adjust for truncation

and censoring

PL <- do.call(cdf, c(list(q = deduct), param))

PX <- do.call(cdf, c(list(q = x), param))

fX <- do.call(pdf, c(list(x = x), param))

lik.contr <- ifelse(limitI, log(l - PX), log(fX)) - log(l -
PL)

return(-sum(lik.contr))

B ORH R R W

e
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Fitting the distribution

Let's try gamma. Note that our objective function needs starting values for

the optimisation. What other starting values could we use?

pdf <- dgamma

cdf <- pgamma

x <- claims$x

deduct <- claims$deduct

1limitI <- claims$limitI

# MME for starting values

start <- list(shape = mean(x)"2/var(x), rate = mean(x)/var(x))

obj.fun <- function(shape, rate) {
param <- list(shape = shape, rate = rate)
return(negloglik(pdf, cdf, param, x, deduct, limitI))

} # we mow have a function to minimise wrt shape and rate

gamma.ll.fit <- stats4::mle(obj.fun, start = start, lower = c(0,
0))

summary (gamma.1ll.fit)

param.g.1ll <- stats4::coef (gamma.ll.fit)

param.g.1l
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## Maximum likelihood estimation

##

## Call:

## stats4::mle(minuslogl = obj.fun, start = start, lower = c(O,
#i# 0))

##
## Coefficients:
## Estimate Std. Error

## shape 2.1297568 0.089216916
## rate 0.2111871 0.008274052
##

## -2 log L: 14707.6

H## shape rate
## 2.1297568 0.2111871
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How did we go?
fit.tcens.param <- param.g.ll # from the proper fit
fit.param <- coef(fitdistrplus::fitdist(claims$x, "gamma", method = "mle"))
# this ts a naive fit
sim.tcens.gamma <- rgamma (10000, shape = fit.tcens.param[1],
rate = fit.tcens.param[2]) # sample from proper fit
sim.gamma <- rgamma(10000, shape = fit.param[1], rate = fit.param[2])
# sample from naive fit
# Comparing the proper fit (that accounts for l-trunc and
# r-cens) with a 'naive' fit (that does not account for

# those)

plot(ecdf (orig_x), main = "Empirical CDF plots", col = "black")
lines(ecdf (sim.tcens.gamma), col = "blue", type = "s")
lines(ecdf (sim.gamma), col = "red", type = "s")

legend("bottomright", legend = c("Original distribution", "Multilevel fit",
"Naive fit"), 1ty = 1, col = c("black", "blue", "red"))

MELBOURNE
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Fn(x)
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© Model selection (MW 3.3)

@ Graphical approaches
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Graphical approaches

For judging quality of model, do some graphical comparisons:

@ histogram vs. fitted parametric density function;

@ empirical CDF vs fitted parametric CDF;

@ probability-probability (P-P) plot - theoretical vs empirical cumulative
probabilities;

e quantile-quantile (Q-Q) plot - theoretical vs sample quantiles.

Let the (theoretical) fitted parametric distribution be denoted by G (X; 0)

MELBOURNE
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P-P plot

To construct the P-P plot:

e order the observed data from smallest to largest: X(1), X(2), -+, X(n)-
@ calculate the theoretical CDF at each of the observed data points:

G (X(,'); 5)

i —0.5
o fori=1,2,...,n, plot the points :

against G (X(,-); 5)

i—0.5

Note that using is Hazen's rule, as recommended by Blom (1959).

see also the following video on YouTube:

@ About the choice of (i —0.5)/n in Q-Q and P-P plots

100/182
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https://www.youtube.com/watch?v=IXyAvKr91as&t=4s

Model selection (MW 3.3) Graphical approaches
Q-Q plot

To construct the Q-Q plot:

e order the observed data from smallest to largest: x(1), X(2), -+, X(

n)-
i —0.5 ~
e for i =1,2,...,n, calculate the theoretical quantiles: G~* <I ;9).
n

i —0.5 =
o for i=1,2,...,n, plot the points x(;) against Gt (I ;9).
n

These constructions hold only for the case where you have no
censoring/truncation.

see also the following video on YouTube:

@ How to build Q-Q plots and P-P plots
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https://www.youtube.com/watch?v=nFFRBHAlRtc

Sl
SUVA GOF graphs

plot.legend <- c("Weibull", "lognormal", "gamma")
fitdistrplus: :denscomp(list(fit.weibull.mle, fit.lnorm.mle, fit.gamma.mle),
legendtext = plot.legend, fitlwd = 3)

Histogram and theoretical densities

—— Weibull
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Density
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data
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fitdistrplus::cdfcomp(list(fit.weibull.mle, fit.lnorm.mle, fit.gamma.mle),
legendtext = plot.legend, fitlwd = 4, datapch = 20)

Empirical and theoretical CDFs
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fitdistrplus: :ppcomp(list(fit.weibull.mle, fit.lnorm.mle, fit.gamma.mle),
legendtext = plot.legend, fitpch = 20)

P-P plot
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fitdistrplus: :ppcomp(list(fit.gamma.mle, fit.weibull.mle, fit.lnorm.mle),
legendtext = c("gamma", "Weibull", "lognormal"), fitpch = 20) #the order

P-P plot
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fitdistrplus: :qqcomp(list(fit.weibull.mle, fit.lnorm.mle, fit.gamma.mle),
legendtext = plot.legend, fitpch = 20)

Q-Q plot
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Hypothesis tests
Hypothesis tests

We will test the null

@ Hj : data came from population with the specified model, against
@ H, : the data did not come from such a population.

Some commonly used tests, and their test statistics:

o Kolmogorov-Smirnoff: K.S. = sup ‘@(y) -G (yé\)‘

e Anderson-Darling: A.D.=n [ [( X))[IG(GR]»;] dG(y)

2
o X2 goodness-of-fit: x> =3, (Obsergdpe;xepdected)

Computational formulas for those tests are available in Delignette-Muller
and Dutang (2015).
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Kolmogorov-Smirnoff test

)

K.S. :sup‘a(y)— G(y;g)

y
where
o G (y) is the empirical distribution
@ G(y;0) is the assumed theoretical distribution in the null hypothesis
e G(y;0) is assumed to be (must be) continuous
o 0 is the maximum likelihood estimate for 6 under the null hypothesis

Note:

@ There are tables for the critical values. There are several variations of
these tables in the literature that use somewhat different scalings for
the K-S test statistic and critical regions.

@ The test (obviously) does not work for grouped data.
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Anderson-Darling test

- G -6 (y:0)]
A.D. = n/ c (y; 5) {1 “C (yé\)] dG(y),
where n is the sample size.

Note:

@ The critical values for the Anderson-Darling test are dependent on the
specific distribution that is being tested. There are tabulated values
and formulas for a few specific distributions.

@ The theoretical distribution is assumed to be (must be) continuous.

@ The test does not work for grouped data.

MELBOURNE
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x? goodness-of-fit test

Procedure:

@ Break down the whole range into k subintervals:
<< <C=00

o Y2 goodness-of-fit test: y? = ij @

o Let pj = G(cj; 0) — G(cj_1;0). Then, the number of expected
observations in the interval (¢j_1, ¢j] assuming that the hypothesized
model is true:

Ej = np; (Here, n is the sample size)

o Let pj = G(¢;) — G(cj_1). Then, the number of observations in the
interval (¢j—1,¢j] :
0; = np

The statistic has chi-square distribution with the degree of freedom
Hgﬂggal to: k — 1 — number of parameters estimated




(IR LN (VAVACR) I  Hypothesis tests

How these tests are used

@ Besides testing whether data came from specified model or not,
generally we would prefer models with:
o lowest K-S test statistic
o lowest A-D test statistic
o lowest x? goodness-of-fit test statistic (or equivalently highest p-value)
o highest value of the likelihood function at the maximum
@ Perform formal statistical test, or use as ‘horse race’

MELBOURNE
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Comparison

@ K-S and A-D tests are quite similar - both look at the difference
between the empirical and model distribution functions.
o K-S in absolute value, A-D in squared difference.
e But A-D is weighted average, with more emphasis on good fit in the
tails than in the middle; K-S puts no such emphasis.

@ For K-S and A-D tests, no adjustments are made to account for
increase in the number of parameters, nor sample size. Result: more
complex models often will fare better on these tests.

o The x? test adjusts the degrees of freedom for increases in the number
of parameters, but is easily manipulated as the choice of brackets is

arbitrary.
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@ Information criteria
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Information criteria

@ Information criteria penalise the log likelihood with a function that
depends on the number of parameters.
o Akaike Information Criterion (AIC):

AICD) = —24) 1 240,

where d(7) denotes the number of estimated parameters in the density

gi that is considered, and where Kg) is the maximum log likelihood that
can be achieved with that density.
e Bayesian Information Criterion (BIC)

BIC() = —25@ + log(n)d.

This is —2SBC, where SBC is Schwarz Bayesian Criterion.
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@ Note that these can sometimes be presented in inverse sign. Here,
because the penalty is added, it is obvious that smaller values of the IC
are preferred.

e

MELBOURNE
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GOF hypothesis test statistics

For MLE:

gofstat(list(fit.weibull.mle, fit.lnorm.mle, fit.gamma.mle),
fitnames = plot.legend)

## Goodness-of-fit statistics

## Weibull 1lognormal gamma
## Kolmogorov-Smirnov statistic 0.07105097 0.04276791 0.03376236
## Cramer-von Mises statistic 1.74049707 0.26568341 0.19438834
## Anderson-Darling statistic  10.69572021 1.70209314 1.10385675
##

## Goodness-of-fit criteria

## Weibull lognormal gamma

## Akaike's Information Criterion 4010.519 3920.717 3907.636

## Bayesian Information Criterion 4020.524 3930.722 3917.641
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For MME:

gofstat(list(fit.weibull.mme, fit.lnorm.mme, fit.gamma.mme),
fitnames = plot.legend)

## Goodness-of-fit statistics

#it Weibull lognormal gamma
## Kolmogorov-Smirnov statistic 0.08023228 0.0374087 0.0327241
## Cramer-von Mises statistic 1.66608962 0.1869752 0.1823197
## Anderson-Darling statistic  10.53097690 1.4369047 1.0539353
##

## Goodness-of-fit criteria

## Weibull lognormal gamma
## Akaike's Information Criterion 4044.239 3922.121 3907.677
## Bayesian Information Criterion 4054.243 3932.125 3917.681

Note that when fitting discrete distributions, the chi-squared statistic is
computed by the gofstat function (see Delignette-Muller and Dutang
(2015) for details).
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GOF hypothesis test results

R can also provide the results from the GOF hypothesis tests. For instance:

gammagof <- gofstat(list(fit.gamma.mle, fit.lnorm.mle), fitnames = c("gamme
"lognormal MLE"), chisgbreaks = c(10:20/2))
gammagof$chisgpvalue

#i#t gamma MLE lognormal MLE
## 1.374256e-03 1.690633e-05
gammagof $adtest

## gamma MLE lognormal MLE
## "rejected" "not computed"
gammagof $kstest

## gamma MLE lognormal MLE
## "not rejected" "rejected"
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gammagof$chisqtable
#i# obscounts
## <=5 36
## <= 5. 28
## <= 6 60
## <= 6. 110
## <=7 130
#H <= 7. 191
## <= 8 134
## <= 8. 141
## <=9 91
## <= 9. 62
## <= 10 51
## > 10 65
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GOF graphical comparisons

plot.legend <- c("lognormal MLE", "lognormal MME")
fitdistrplus::denscomp(list(fit.lnorm.mle, fit.lnorm.mme), legendtext = plc
fitlwd = 3)

Histogram and theoretical densities
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fitdistrplus::cdfcomp(list(fit.lnorm.mle, fit.lnorm.mme), legendtext = plot
fitlwd = 4, datapch = 20)

Empirical and theoretical CDFs
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fitdistrplus: :ppcomp(list(fit.lnorm.mle, fit.lnorm.mme), legendtext = plot.
fitpch = 20)

P-P plot
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fitdistrplus: :qqcomp(list(fit.lnorm.mle, fit.lnorm.mme), legendtext = plot.
fitpch = 20)

Q-Q plot

Empirical quantiles
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lognormal MME

Theoretical quantiles
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(I Ea NV AWAR) I SUVA GOF stats

plot.legend <- c("gamma MLE", "gamma MME")
fitdistrplus: :denscomp(list(fit.gamma.mle, fit.gamma.mme), legendtext = plc
fitlwd = 3)

Histogram and theoretical densities

—— gamma MLE

g //‘\\ T e
| / N

Density
0.00 0.05 0.10 0.15 0.20 0.25 0.30
1

data

132/182



(I Ea NV AWAR) I SUVA GOF stats

fitdistrplus::cdfcomp(list(fit.gamma.mle, fit.gamma.mme), legendtext = plot
fitlwd = 4, datapch = 20)

Empirical and theoretical CDFs

CDF

== gamma MLE
<o == gamma MME

data
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(I Ea NV AWAR) I SUVA GOF stats

fitdistrplus: :ppcomp(list(fit.gamma.mle, fit.gamma.mme), legendtext = plot.
fitpch = 20)

P-P plot
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(I Ea NV AWAR) I SUVA GOF stats

fitdistrplus: :qqcomp(list(fit.gamma.mle, fit.gamma.mme), legendtext = plot.
fitpch = 20)

Q-Q plot
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@ I Other advanced topics
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@ X Other advanced topics
@ I Alternative methods for estimation
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X Alternative methods for estimation
Y4 Maximum Goodness Estimation (MGE)

@ This is one form of “minimum distance estimation”, whereby
parameters are chosen such that a distance (between empirical and
theoretical) is minimised

@ Here we focus on the GOF tests AD, CvM, and KS

@ This can be readily chosen in R using fitdist, with method="mge"
and where gof= one of AD, CvM, or KS.

e

MELBOURNE

136/182



"X Other advanced topics "X Alternative methods for estimation

With the SUVA data:

fit.gamma.mge.ad <- fitdist(log(SUVA$dailyallow[SUVA$dailyallow >
0]), "gamma", method = "mge", gof = "AD")

fit.gamma.mge.ks <- fitdist(log(SUVA$dailyallow[SUVA$dailyallow >
0]), "gamma", method = "mge", gof = "KS")

gof .mge.legend <- c("gamma MLE", "gamma MGE AD", "gamma MGE KS")

gofstat(list(fit.gamma.mle, fit.gamma.mge.ad, fit.gamma.mge.ks),
fitnames = gof.mge.legend)

## Goodness-of-fit statistics

## gamma MLE gamma MGE AD gamma MGE KS
## Kolmogorov-Smirnov statistic 0.03376236 0.02841676 0.0208791
## Cramer-von Mises statistic 0.19438834 0.14533386 0.1444858
## Anderson-Darling statistic 1.10385675 0.96063188 1.6991376
#it

## Goodness-of-fit criteria

## gamma MLE gamma MGE AD gamma MGE KS
## Akaike's Information Criterion 3907.636 3908.736 3919.475
## Bayesian Information Criterion 3917.641 3918.740 3929.480
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denscomp(list(fit.gamma.mle, fit.gamma.mge.ad, fit.gamma.mge.ks),
legendtext = gof.mge.legend, fitlwd = 3)

Histogram and theoretical densities
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data
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cdfcomp(list(fit.gamma.mle, fit.gamma.mge.ad, fit.gamma.mge.ks),
legendtext = gof.mge.legend, fitlwd = 4, datapch = 20)

Empirical and theoretical CDFs
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"X Other advanced topics "X Alternative methods for estimation

ppcomp (list(fit.gamma.mle, fit.gamma.mge.ad, fit.gamma.mge.ks),
legendtext = gof.mge.legend, fitpch = 20)

P-P plot
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qqcomp(list(fit.gamma.mle, fit.gamma.mge.ad, fit.gamma.mge.ks),
legendtext = gof.mge.legend, fitpch = 20)

Q-Q plot
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"4 AD based parameter estimation

@ Recall the Anderson-Darling test statistic, which focused on the tails.

@ What if we wanted to generalise the idea of AD to left tail or right tail
only, or put even more weight on either of those tails?

@ The AD test considers a weighted “sum” (integral) of the squared
difference between empirical and theoretical cdf's

@ In its original formulation, the weight is of the form

1
TG =G

which goes to infinity when y — 0 or y — 0.
@ There are 5 alternatives in fitdistrplus.

MELBOURNE
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"X Other advanced topics "X Alternative methods for estimation

@ ADR: Right-tail AD, where

@ ADL: Left-tail AD, where

@ ADR2: Right-tail AD, 2nd order, where

1
YT GOP
@ ADL2: Left-tail AD, 2nd order, where
"= GO
@ AD2: AD, 2nd order. Here, R will minimise ADR2 + ADL2. m
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With the SUVA data:

fit.gamma.mge.adr <- fitdist(log(SUVA$dailyallow[SUVA$dailyallow >
01), "gamma", method = "mge", gof = "ADR")

fit.gamma.mge.adr2 <- fitdist(log(SUVA$dailyallow[SUVA$dailyallow >
0]), "gamma", method = "mge", gof = "AD2R")

gof .mge.legend2 <- c("gamma MGE AD", "gamma MGE ADR", "gamma MGE ADR2")
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gofstat(list(fit.gamma.mge.ad, fit.gamma.mge.adr, fit.gamma.mge.adr2),
fitnames = gof.mge.legend2)

## Goodness-of-fit statistics

## gamma MGE AD gamma MGE ADR
## Kolmogorov-Smirnov statistic  0.02841676 0.0309970
## Cramer-von Mises statistic 0.14533386 0.1553754
## Anderson-Darling statistic 0.96063188 0.9799768
## gamma MGE ADR2

## Kolmogorov-Smirnov statistic 0.03980158

## Cramer-von Mises statistic 0.24760685

## Anderson-Darling statistic 1.38154307

##

## Goodness-of-fit criteria

## gamma MGE AD gamma MGE ADR
## Akaike's Information Criterion 3908.736 3908.223
## Bayesian Information Criterion 3918.740 3918.228
## gamma MGE ADR2

## Akaike's Information Criterion 3908.049

## Bayesian Information Criterion 3918.054
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denscomp(list(fit.gamma.mge.ad, fit.gamma.mge.adr, fit.gamma.mge.adr2),
legendtext = gof.mge.legend2, fitlwd = 3)

Histogram and theoretical densities
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cdfcomp(list(fit.gamma.mge.ad, fit.gamma.mge.adr, fit.gamma.mge.adr2),
legendtext = gof.mge.legend2, fitlwd = 4, datapch = 20)

Empirical and theoretical CDFs
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ppcomp(list(fit.gamma.mge.ad, fit.gamma.mge.adr, fit.gamma.mge.adr2),
legendtext = gof.mge.legend2, fitpch = 20)

P-P plot
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qqcomp (list(fit.gamma.mge.ad, fit.gamma.mge.adr, fit.gamma.mge.adr2),
legendtext = gof.mge.legend2, fitpch = 20)

Q-Q plot
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X Alterative methods for estimation
X Quantile matching

@ Quantile matching is easily implemented in R:
o set method="gme" in the call to fitdist;
e and add an argument probs defining the probabilities for which the
quantile matching is performed.
@ The number of quantiles to match must be the same as the number of

parameters to estimate.
@ The quantile matching is carried out numerically, by minimising the
sum of squared differences between observed and theoretical quantiles.

For example:

fit.gamma.qme <- fitdist(log(SUVA$dailyallow[SUVA$dailyallow >
0]), "gamma", method = "qme", probs = c(0.5, 0.75))

fit.lnorm.gme <- fitdist(log(SUVA$dailyallow[SUVA$dailyallow >
0]), "lnorm", method = "gme", probs = c(0.5, 0.75))

gof .qme.legend <- c("gamma MLE", "gamma QME", "lognormal QME")
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denscomp(list(fit.gamma.mle, fit.gamma.gme, fit.lnorm.gme), legendtext = go
fitlwd = 3)

Histogram and theoretical densities
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cdfcomp(list(fit.gamma.mle, fit.gamma.qme, fit.lnorm.qme), legendtext = gof
fitlwd = 4, datapch = 20)

Empirical and theoretical CDFs
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ppcomp(list(fit.gamma.mle, fit.gamma.gme, fit.lnorm.gme), legendtext = gof.

fitpch = 20)
P-P plot
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qqcomp (list(fit.gamma.mle, fit.gamma.qme, fit.lnorm.qme), legendtext = gof.
fitpch = 20)

Q-Q plot

Empirical quantiles
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@ X Other advanced topics

@ "4 Zero-inflated severity model X = IB

1§:§§;
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Y4 Zero-inflated severity model X = IB

In this approach X = IB, where
@ [/ is an indicator of claim with
Pr[l=1=qgand Pr[/I=0]=1-gq

@ B is the {claim amount given | = 1} (given a claim occurs).

This allows us to avoid a large probability mass at O for rare losses.

e
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PO VEN IS RECTII 4 Zero-inflated severity model X = /B

@ Note that this is a good approach for modifying continuous
distributions, which are generally used for severity.

@ In the case of discrete distributions—usually used for frequency,
modifications of the usual distributions (in the form of “zero-truncated
or “zero-modified”) are well known, and readily available in the
package actuar. This is discussed in Module 2.

@ In practice a frequency and severity model would be chosen at the
same time, and the way zero claims are dealt with should be
determined in a consistent way, e.g.:

e “frequency” models strictly positive claims, and “severity” is a strictly
positive continuous distribution;

e “frequency” models insurable events (which may lead to claims of 0),
and “severity” includes a mass at 0 (such as in this section);

e etc...
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X4 Resulting distribution

As a consequence,

PriX <x] = Pr[X <x|l=0]Pr[l =0]
+Pr[X < x|l =1]Pr[l =1]
= 1—qg+qgPr[B<x]

and

Mx(t) = E[e™X|I =0]Pr[/ = 0]
+E[eX|I = 1] Pr[l = 1]
= 1—q+ gE[eB].

e
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PO VEN IS RECTII 4 Zero-inflated severity model X = /B

»“ Mean and Variance

The mean can be determined using
EX]= EIE[X|N] = EIX|I = 1]Pr[I = 1] = gE (B),
after noting that E [X |/ = 0] = 0.

The variance can be determined using
Var (X) = Var(E[X]|/]) + E[Var (X]|])]

[E (B)]? Var (I) 4 qVar (B)
q(1—q)(E[B])* + qVar (B)

after noting that

E[X|N] |- E[B], and that
Var(X|l) = I?- Var(B),

iswhich are both random variables (functions of /).
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Y4 Special case: X = Ib

o Fixed claim: B = b with probability 1.
@ The individual claim random variable becomes

@ Mean: E [X] = bg
e Variance: Var (X) = b?Var (I) = b?q (1 — q)

This is nothing more than a scaled Bernoulli... (and if you add them, the
sum becomes a scaled Binomial)

e
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M Zero-inflated severity model X = IB
X Example: Bicycle Theft (get B out of X)

@ Insurance policy against bicycle theft (insured amount is 400)

@ Only half is paid if bicycle is not locked.

@ Assume: Pr[X = 400] = 0.05 and Pr[X = 200] = 0.15.

@ Probability of a claim: ¢ = Pr[/ = 1] = 0.20 [law of total probability]
@ The pmf of B is computed in the following way

Pr(B=400] = Pr[X =400|/=1] = P2 0 1=
= §3% =025

MELBOURNE
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4 Example

In an insurance portfolio, there are 15 insured:

@ ten of the insured persons have 0.1 probability of making a claim, and
@ the other 5 have a 0.2 probability of making a claim.

All claims are independent and follow an exponential distribution with mean
1/X. What is the mgf of the aggregate claims distribution?
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PO VEN IS RECTII 4 Zero-inflated severity model X = /B

Let X; be the total amount of claims incurred from the ith person, and B;
denote the amount of claim, if there is one. Then X; = [;B;.

If gg=Pr(li=1)then g =---=qio=0.1and g11 =--- = q15 = 0.2.
The mgf of X;:

Mx(t) = E[ei|]; = 0] Pr(l; = 0) + E[e™|; = 1] Pr(J; = 1)
= 1-gqi+E[eBlg=1-q+25q

Since the aggregate claims are S = Xj + - -+ + Xi5 the mgf of S is

Ms(t) = TIi2; E[e*] y .
= (1-01+4015;)  (1-02+025)
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@ Calculating within layers for claim sizes (MW 3.4)
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@ Calculating within layers for claim sizes (MW 3.4)

@ Usual policy transformations
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Deductible and Policy Limit
One way to control the cost (and variability) of individual claim losses is to
introduce deductibles and policy limits.

@ Deductible d: the insurer starts paying claim amounts above the
deductible d

o Limit M: the insurer pays up to the limit M.

If we denote the damage random variable by D, then if a claim occurs the
insurer is liable for

X =min[max (D — d,0), M].
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@ Calculating within layers for claim sizes (MW 3.4)

@ Reinsurance
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Calculating within layers for claim sizes (MW 3.4) Reinsurance

Reinsurance

Reinsurance is a risk transfer from an insurer (the direct writer) to a
reinsurer:

@ in other words, some of the (random) risk faced by the insurer is
“transfered” to the reinsurer (that means the reinsurer will cover that
risk), in exchange of a (deterministic) premium (which will obviously
generally be higher than the expected value of the risk that was

transferred)
@ the risk that the insurer keeps is called the retention
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There are different types of reinsurance:

@ proportional
e quota share: the proportion is the same for all risks
e surplus: the proportion can vary from risk to risk
@ nonproportional
o (individual) excess of loss: on each individual loss (X;)
o stop loss: on the aggregate loss (S)

@ cheap (reinsurance premium is the expected value), or non cheap
(reinsurance premium is loaded)

@ Alternative Risk Transfers (“ART"), where usually the idea is to
transfer the risk to different / deeper pockets. For instance, for
transfers to the financial markets:

o Catastrophe bonds (“CAT bonds”)
e Longevity bonds
e Pandemic bonds
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@ Calculating within layers for claim sizes (MW 3.4)

@ Proportional reinsurance
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Proportional reinsurance

The retained proportion « defines who pays what:

@ the insurer pays Y = aX
@ the reinsurer pays Z = (1 — a)X

This is nothing else but a change of scale and we have
_ 2 22 _
By =apx, Oy = 0x, 7y =7X-.
In some cases it suffices to adapt the scale parameter. Example:

o If X is exponential with parameter 3
PrlY <y]=PrlaX <y] =Pr[X < y/a] =1 — e /e

and thus Y is exponential with parameter (/c.
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@ Calculating within layers for claim sizes (MW 3.4)

@ Nonproportional reinsurance
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Nonproportional reinsurance

Basic arrangements:

@ the reinsurer pays the excess over a retention (excess point) d
o the insurer pays Y = min(X, d)
o the reinsurer pays Z = (X — d),
e E[(X —d)4] is called stop-loss premium.
@ the reinsurer limits his payments to an amount M. In that case
o the insurer pays Y = min(X,d) + (X — M —d),
o the reinsurer pays Z = min {(X — d)+, M}
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Example

Consider a life insurance company with 16,000 1-year term life insurance
policies. The associated insured amounts are:

Benefit (10000's) # policies

1 8000
2 3500
3 2500
5 1500
10 500

The probability of death (q) for each of the 16,000 lives is 0.02. This
company has an EolL reinsurance contract with retention limit 30,000 at a
cost of 0.025 per dollar of coverage.

What is the approximate probability (using CLT) that the total cost w
lﬁeﬂﬁﬁed 8,250,000? “\AHKOURN[‘




Calculating within layers for claim sizes (MW 3.4) Nonproportional reinsurance

The portfolio of retained business is given by

k

retained benefit by (10000's) # policies ny

w N =

1
2
3

8000
3500
4500

Now

E[S]

Var[S]
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a1 MkE[Xk] = 3—1 nkbkak
8000-1-0.02+ 3500-2-0.02+ 4500-3-0.02
570, and

et i Var[Xi] = i1 micbzgi(1 — qx)
8000 - 12-0.02 - 0.98 + 3500 - 22 - 0.02 - 0.98
+4500 - 3%2-.0.02 - 0.98
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Calculating within layers for claim sizes (MW 3.4) Nonproportional reinsurance

The reinsurance cost is

[(5— 3) - 1500 + (10 — 3) - 500] - 0.025 = 162.5.

Thus, the desired probability becomes

Pr[S + 162.5 > 825] = Pr ;;fr[(ssl) > 6?;33—(551}
~ 662.5-570
~ Pr|Z > 86255 }
— Pr[Z > 2.643] = 0.0041.
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Discussion:

e Without reinsurance, exp/var is 700/2587.20 so the associated
probability of shortfall is ~ Pr[Z > 2.458], which is higher even though
it is not cheap reinsurance.

@ However, there is lower expected gain:

e With reinsurance the expected gain is

P —-570—-1625=P — 7325

o Without reinsurance it is
P — 700,

which is higher.

MELBOURNE
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X4 The actuar coverage function

@ The package actuar allows for direct specification of the pdf of a
modified random variable after possible left-trunction and
right-censoring.

@ Given the pdf or cdf of the original loss D, coverage returns a
function object to compute the pdf or cdf of the modified random

variable after one or several of the following modifications:
e ordinary deductible d;
o franchise deductible d;
o limit u;
@ coinsurance «;
e inflation r.

@ The vignette on loss modeling features of actuar provides precise
definitions, and this document summarises all the formulas.
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Calculating within layers for claim sizes (MW 3.4) Nonproportional reinsurance

Assume that insurance payments are

X D—d, d<D<u
] u—d, D>u
with mixed distribution
0, x=0
fo(y+d
flv) — %, O<x<u-—d
iFp(d)r X=U—
0 x>u—d

as seen before. Note however that the u is expressed on the raw variable D,
not the payment, so that the maximum payment is v — d.

MELBOURNE
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If D is gamma, d = 2, and u = 20, one can get fx(x) in R as follows:
f <- coverage(pdf = dgamma, cdf = pgamma, deductible = 2, limit = 20)

The function can be then used to fit distributions to data.

As an example we will use the previously generated data xcens. Note it
needs to be shifted by d down, because what we have is the left-truncated
and right-censored D, not the insurance payments as per the formulation
above.
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fit.gamma.xcens2 <- fitdistr(xcens$left - 2, f, start = list(shape = mean(s
rate = mean(xcens$left)/var(xcens$left)))

fit.gamma.xcens2

## shape rate

##  2.03990496 0.20142871

## (0.10516139) (0.01009694)

fit.tgamma.xcens # our previous fit with fitdist

## Fitting of the distribution ' tgamma ' on censored data by maximum likel

## Parameters:

## Fixed parameters:

c(fit.gamma.xcens2$loglik, fit.tgamma.xcens$loglik)

## [1] -5341.551 -5340.151

Note that this is using MASS: : fitdistr rather than the (arguably more
flexible and possibly advanced) fitdistrplus::fitdist. This approach
works as well, but does not seem as precise in this particular instance.

e
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A useful identity

Note that
min(X,c) =X — (X —¢)+
and thus
E[min(X, c)] = E[X] = E[(X — c)4].
The amount E[(X — ¢)4] = Pr[X > c]e(c)
@ is commonly called “stop loss premium” with retention c.

@ is identical to the expected payoff of a call with strike price ¢, and thus

results from financial mathematics can sometimes be directly used (and
vice versa).
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@ Calculating within layers for claim sizes (MW 3.4)

@ Stop loss premiums
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Stop loss premiums

Let
E[(X — d)+] = Pa.

Then we have (for positive rv's)

p,— J3° [1— Fx(x)] dx if X is continuous
7 Yo [1— Fx(x)] if X is discrete
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Example

Calculate Py if X is Exponential with mean 1/8.
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"I Recursive formulas in the discrete case

First moment: - if d is an integer
Pyi1 = Pg — [1 — Fx(d)] with Py = E[X]
- if d is not an integer
Pg = Pla) — (d = [d])[1 = Fx(ld])]-
Second moment P3 = E[(X — d)3]:

P31 = P3—2P4+ [1 — Fx(d)] with P§ = E[X?].

Note that |x| is the integer part of x (e.g. [2.5] = 2).

e
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Y4 Numerical example

For the distribution F11243 derived in Module 2 we have
E[S] = 4 = 128/32 and E[S?] = 19.5 = 624/32 and thus

Var((X —
d  firoes(d)  Figous(d) Py Pi d)+)
0 1/32 1/32 128/32 624/32 3.500
1 2/32 3/32 97/32 399/32 3.280
2 432 7/32 68/32 234/32 2.797
3 6/32 13/32 43/32 123/32 2.038
4 6/32 19/32 24/32 56/32 1.188
5 6/32 25/32 11/32 21/32 0.538
6 4/32 29/32 4/32 6/32 0.172
7 2/32 31/32 1/32 1/32 0.030
8 1/32 32/32 0 0 0.000
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Leverage effect of claims inflation

Choose a fixed deductible d > 0 and assume that the claim at time 0 is
given by Yp. Assume that there is a deterministic inflation index i > 0 such
that the claim at time 1 can be represented by Y; = (1 + i) Yp.We have

E[(Y1—d)4] > (1 +)E[(Yo — d)-].

When tax brackets are not adapted, this leads to the so-called “bracket
creep”...
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