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Introduction: Models for aggregate losses

Introduction: Models for aggregate losses

A portfolio of contracts or a contract will potentially experience a sequence
of losses:

Y1, Y2, Y3, . . .

We are interested in the aggregate sum S of these losses over a certain
period of time.

How many losses will occur?
if deterministic (n) −→ individual risk model
if random (N) −→ collective risk model

How do they relate to each other?
usual assumption: iid

When do these losses occur?
usual assumption: no time value of money
−→ short term models

How big are these losses?
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The Individual Risk Model Definition

The Individual Risk Model

In the Individual Risk Model

S = Y1 + · · · + Yn =
n∑

i=1
Yi ,

where Yi , i = 1, 2, ..., n, are iid claims. There are several methods to get
probabilities about S:

get the whole distribution of S (if possible)
Convolutions
Generating functions

(✠) approximate with the help of the moments of S (Module 4)
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The Individual Risk Model Convolutions of random variables

Convolutions of random variables

In probability, the operation of determining the distribution of the sum of
two random variables is called a convolution. It is denoted by

FX+Y = FX ∗ FY .

The result can then be convolved with the distribution of another random
variable. For instance,

FX+Y +Z = FZ ∗ FX+Y .

This can be done for both discrete and continuous random variables. It is
also possible for mixed rv’s, but it is more complicated.
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The Individual Risk Model Convolutions of random variables

Formulas

In short

Discrete case:
df: FX+Y (s) =

∑
x FY (s − x) fX (x)

pmf: fX+Y (s) =
∑

x fY (s − x) fX (x)
Continuous case:

cdf: FX+Y (s) =
∫ s

−∞ FY (s − x) fX (x) dx
pdf: fX+Y (s) =

∫ s
−∞ fY (s − x) fX (x) dx

Examples:

discrete case: Bowers et al. (1997) Example 2.3.1 on page 35
continuous case: Bowers et al. (1997) Example 2.3.2 on page 36
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The Individual Risk Model Convolutions of random variables

Numerical example

Consider 3 discrete r.v.’s with probability mass functions

f1 (y) = 1
4 , 1

2 , 1
4 for y = 0, 1, 2

f2 (y) = 1
2 , 1

2 for y = 0, 2
f3 (y) = 1

4 , 1
2 , 1

4 for y = 0, 2, 4

Calculate the pmf f1+2+3 and the df F1+2+3 of the sum of the three
random variables.
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The Individual Risk Model Convolutions of random variables

Solution

y f1 (y) f2 (y) f1+2 (y) f3 (y) f1+2+3 (y) F1+2+3 (y)

0 1/4 1/2 1/8 1/4 1/32 1/32
1 1/2 0 2/8 0 2/32 3/32
2 1/4 1/2 2/8 1/2 4/32 7/32
3 0 0 2/8 0 6/32 13/32
4 0 0 1/8 1/4 6/32 19/32
5 0 0 0 0 6/32 25/32
6 0 0 0 0 4/32 29/32
7 0 0 0 0 2/32 31/32
8 0 0 0 0 1/32 32/32

f1+2(2) = 1/4 · 1/2 + 1/2 · 0 + 1/4 · 1/2
f1+2+3(4) = 1/8 · 1/4 + 2/8 · 0 + 2/8 · 1/2 + 2/8 · 0 + 1/8 · 1/4
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The Individual Risk Model Using generating functions

Using generating functions

There is a 1-1 relation between a distribution and its mgf or pgf.

Because

MS(t) = E
[
etS
]

= E
[
et(Y1+...+Yn)

]
= E

[
etY1 · · · etYn

]
and if losses are independent then we have

MS(t) = E
[
etS
]

= E
[
etY1

]
· · · E

[
etYn

]
= MY1(t) · · · MYn(t).

The same argument holds for the pgf’s.

Sometimes, MS(t) or pS(t) can be recognised: this is the case for
infinitely divisible distributions (Normal, Poisson, Inverse Gaussian, . . . )
and certain other distributions (Binomial, Negative binomial).
Otherwise, MS(t) or pS(t) can be expanded numerically to get
moments and/or probabilities.
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The Individual Risk Model Using generating functions

Example

Consider a portfolio of 10 contracts. The losses Yi ’s for these contracts are
iid rv’s with mean 100 and variance 100. Determine the distribution, the
expected value and the variance of S if these losses are

1 Normal;
2 Gamma;
3 Poisson.
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The Individual Risk Model Using R

Using R

Contrary to Excel, convolutions are extremely easy to implement in R
using vectors.

f1 <- c(1/4, 1/2, 1/4, 0, 0)
f2 <- c(1/2, 0, 1/2, 0, 0)
f12 <- c(f1[1] * f2[1], sum(f1[1:2] * f2[2:1]), sum(f1[1:3] *

f2[3:1]), sum(f1[1:4] * f2[4:1]), sum(f1[1:5] * f2[5:1]))
f12

## [1] 0.125 0.250 0.250 0.250 0.125

The example above is generalised in Exercise los9R.
A more advanced R function is convolve. It actually involves the Fast
Fourier Transform (a method that is related to that of the mgf’s) for
efficiency. We do not discuss this here, but it is used in the
implementation of convolutions in the function aggregateDist of the
package actuar (introduced later).
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The Collective Risk Model (Compound distributions, MW 2.1) Definition

Introduction

Two models, depending on the assumption on the number of losses:

deterministic - n
main focus on the claims of individual policies (whose number is a
priori known)
−→ Individual Risk Model
discussed in previous sections

random - N
main focus on claims of a whole portfolio (whose number is a priori
unknown)
−→ Collective Risk Model
this is another way of separating frequency and severity

In this section we focus on the Collective Risk Model.
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The Collective Risk Model (Compound distributions, MW 2.1) Definition

Definition

In the Collective Risk Model, aggregate losses become

S = Y1 + . . . + YN =
N∑

i=1
Yi .

This is a random sum. We make the following assumptions:

N is the number of claims
Yi is the amount of the ith claim
the Yi ’s are iid with

(c)df G(y)
p(d/m)f g(y)

the Yi ’s and N are mutually independent
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The Collective Risk Model (Compound distributions, MW 2.1) Moments of S

Moments of S

We have
E [S] = E [E [S|N]] = E [NE [Y ]] = E [N]E [Y ],

and

Var(S) = E [Var(S|N)] + Var (E [S|N])
= E [NVar(Y )] + Var(E [Y ]N)
= E [N]Var(Y ) + E [Y ]2Var(N)
= E [N](E [Y 2] − E [Y ]2) + E [Y ]2Var(N)
= E [N]E [Y 2] + E [Y ]2 (Var(N) − E [N]) .
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The Collective Risk Model (Compound distributions, MW 2.1) Moment generating function of S

Moment generating function of S

It is possible to get MS(t) as a function of MY (t) and MN(t):

MS(t) = E
[
etS
]

= E
[
E
[
et(Y1+Y2+...+YN)

∣∣∣N]]
= E

[
MY (t)N

]
= E

[
eN ln MY (t)

]
= MN (ln MY (t))
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The Collective Risk Model (Compound distributions, MW 2.1) Moment generating function of S

Example (Bowers et al. (1997), 12.2.1)

Assume that N is geometric with probability of success p:

Pr[N = n] = pqn, n = 0, 1, . . . ,

where 0 < q < 1 and p = 1 − q. We have then

MN(t) = E [etN ] =
∞∑

n=0
pqnetn = p

1 − qet ,

and thus

MS(t) = MN (ln MY (t)) = p
1 − qeln MY (t) = p

1 − qMY (t) .
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The Collective Risk Model (Compound distributions, MW 2.1) Distribution of S

Distribution of S

It is possible to get a fairly general expression for the df of S by
conditioning on the number of claims:

FS(x) =
∞∑

n=0
Pr[S ≤ x |N = n] Pr[N = n] =

∞∑
n=0

G∗n(x) Pr[N = n], (1)

where G∗n(y) is the n-th convolution of G .

Note that

N will always be discrete, so this works for any type of rv Y .
(continuous, discrete or mixed)
However, the type of S will depend on the type of Y .
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The Collective Risk Model (Compound distributions, MW 2.1) Distribution of S

Distribution of S if X is continuous

If X is continuous, S will generally be mixed:

with a mass at 0 because of Pr[N = 0] (if positive)
continuous elsewhere, but with a density integrating to 1 − Pr[N = 0]
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The Collective Risk Model (Compound distributions, MW 2.1) Distribution of S

Example, continued (Bowers et al. (1997), 12.2.3)

Assume now that

G(y) = 1 − e−y and hence MY (t) = 1
1 − t for t < 1.

Now, we have that (remember Pr[N = 0] = p)

MS(t) = p
1 − qMY (t) .

It follows that

MS(t) = p
1 − q 1

1−t
= p + q p

p − t = pE
[
et·0

]
+ (1 − p)E

[
etZ
]

,

where Z is an exponential rv with parameter p. Therefore,

fS(s) =
{

p = Pr[N = 0] (probability mass) s = 0;
(1 − p)(pe−ps) (probability density) s > 0.
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The Collective Risk Model (Compound distributions, MW 2.1) Distribution of S

Distribution of S if Y is mixed

If Y is mixed, S will generally be mixed:

with a mass at 0 because of Pr[N = 0] and Pr[Y = 0] (if positive)
mixed (if Y is not continuous for x > 0) or continuous elsewhere
with a density integrating to something ≤ 1 − Pr[N = 0]
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The Collective Risk Model (Compound distributions, MW 2.1) Distribution of S

Distribution of S if Y is discrete

For discrete Y ’s we can get a similar expression to for the pmf of S:

fS(s) =
∞∑

n=0
Pr[S = s|N = n] Pr[N = n] =

∞∑
n=0

g∗n(s) Pr[N = n], (2)

where g∗0(0) = 1 (and thus 0 anywhere else).

This can be implemented in a table and/or in a program.
However, if the range of N goes really to infinity, calculating fS(s) may
require an infinity of convolutions of Y .
This formula is more efficient if the number of possible outcomes for N
is small.
✠ The pmf g∗n(s) can be calculated using de Pril’s algorithm.
(see Module 4)
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The Collective Risk Model (Compound distributions, MW 2.1) Distribution of S

Example with tabular approach

From Bowers et al. (1997), 12.2.2:

The convolutions are in done the usual way.
The number of columns depends on the range of N.
The fS(x) are the sumproduct of the row x and row Pr[N = n]:

fS(3) = 0 · 0.1 + 0.1 · 0.3 + 0.4 · 0.4 + 0.125 · 0.2.
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The Collective Risk Model (Compound distributions, MW 2.1) Using R

Using R

We will make extensive use of the function aggregateDist from the
package actuar (Dutang, Goulet, and Pigeon 2008):

This function allows for several different aggregate distribution
approaches, which will be introduced here (and in Module 4 as the
associated theory is presented).
Here, we show how the function can be used to implement formulas (1)
and (2) (using the function convolve in the background). This
corresponds to the method="convolution" approach.
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The Collective Risk Model (Compound distributions, MW 2.1) Using R

actuar::aggregateDist(method="convolution"):

A discrete distribution for Y is required. Note that discretisation
methods are discussed in Module 4. This is input as a vector of claim
amount probability masses after the argument model.sev=. The first
element must be Pr[Y = 0].
There is no restriction on the shape of the frequency distribution, but
it must have a finite range. This is input as a vector of claim number
probability masses after the argument model.freq=. The first element
must be Pr[N = 0].
The outcome of the function is (1). Additional outputs:

plot: to get a pretty plot of the df
summary: to get summary statistics
mean: to get the mean
diff: to get the pmf

Additional options are:
x.scale: currency units per unit of sev in the severity model (this
allows calculations on multiples of $1)
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The Collective Risk Model (Compound distributions, MW 2.1) Using R

# Bowers 12.2.2
fy <- c(0, 0.5, 0.4, 0.1)
fn <- c(0.1, 0.3, 0.4, 0.2)
Fs <- aggregateDist("convolution", model.freq = fn, model.sev = fy)
mean(Fs)
## [1] 2.72
pmf <- c(Fs(0), diff(Fs(0:9)))
cbind(s = c(0:9), fs = pmf, Fs = Fs(0:9))
## s fs Fs
## [1,] 0 0.1000 0.1000
## [2,] 1 0.1500 0.2500
## [3,] 2 0.2200 0.4700
## [4,] 3 0.2150 0.6850
## [5,] 4 0.1640 0.8490
## [6,] 5 0.0950 0.9440
## [7,] 6 0.0408 0.9848
## [8,] 7 0.0126 0.9974
## [9,] 8 0.0024 0.9998
## [10,] 9 0.0002 1.0000
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The Collective Risk Model (Compound distributions, MW 2.1) Using R

summary(Fs)
## Aggregate Claim Amount Empirical CDF:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 2.00 3.00 2.72 4.00 9.00
plot(Fs)
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Explicit claims count distributions (MW 2.2) Introduction

Exposure

It makes no sense to talk about frequency in an insurance portfolio
without considering exposure. Chapter 4 of Werner and Modlin (2010)
defines exposure as “the basic unit that measures a policy’s exposure
to loss”.
One primary criterion for choosing an exposure base is that it “should
be directly proportional to expected loss”. Here we are focussing on
frequency, so exposure should be something directly proportional to the
expected frequency.
Wuthrich (2023) calls exposure “volume”, denoted v , and defines the
claims frequency as

N
v .
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Explicit claims count distributions (MW 2.2) Introduction

Basic models for claims frequency

In our case, we will assume that it directly affects the likelihood of a
claim to occur - the frequency - such that N/v is normalised
MW defines

pk = Pr[N = k], for k ∈ A ⊂ N0,

where A us the set of possible frequency outcomes.
There are three main assumptions for pk :

binomial (with variance less than mean)
Poisson (with variance equal to the mean)
negative-binomial (a Poisson with random mean, so that variance is
more than the mean)

A summary table of those distributions is also given in Bowers et al.
(1997), see Table 12.3.1 on page 376.
These all belong to a class of distributions called (a, b)
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Explicit claims count distributions (MW 2.2) Binomial distribution

4 Explicit claims count distributions (MW 2.2)
Introduction
Binomial distribution
Poisson distribution
Mixed Poisson distribution
Negative-binomial distribution

29/74



Explicit claims count distributions (MW 2.2) Binomial distribution

Binomial distribution

fixed volume v ∈ N
fixed default probability p ∈ (0, 1) (expected claims frequency)
pmf of N ∼ Binom(v , p) is

pk = Pr[N = k] =
(

v
k

)
pk(1 − p)v−k , for all k ∈ {0, . . . , v} = A.

same as a sum of Bernoulli (which is the case v = 1)
makes sense for homogenous portfolio with unique possible events,
such as credit defaults, or deaths in a life insurance model
In R: dbinom, pbinom, qbinom, rbinom, where size is v , and where
prob is p
Note that

(v
k
)

can be computed with the R function choose.
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Explicit claims count distributions (MW 2.2) Binomial distribution

Compound binomial model

The total claim amount S has a compound binomial distribution

S ∼ CompBinom(v , p, G)

if S has a compound distribution with N ∼ Binom(v , p) for given v ∈ N
and p ∈ (0, 1) and individual claim size distribution G .

Corollary 2.7: Assume S1, . . . , Sn are independent with
Sj ∼ CompBinom(vj , p, G) for all j = 1, . . . , n. The aggregated claim has a
compound binomial distribution with

S =
n∑

j=1
Sj ∼ CompBinom

 n∑
j=1

vj , p, G

 .
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Explicit claims count distributions (MW 2.2) Binomial distribution

Exercise NLI3 considers the decomposition of S into small and large claims.
It shows that Slc—the sum of those claims exceeding a certain threshold M
only (see notation in Example 2.16 later in those slides)—is compound
binomial again.
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Explicit claims count distributions (MW 2.2) Poisson distribution
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Explicit claims count distributions (MW 2.2) Poisson distribution

Poisson distribution

fixed volume v > 0

expected claims frequency λ > 0

pmf of N ∼ Poi(λv) is

pk = Pr[N = k] = e−λv (λv)k

k! for all k ∈ A = N0.

Lemma 2.9: increase volume while keeping E [N] fixed in a binomial
model leads to a Poisson distribution (more so for small p compared to
v).

In R: dpois, ppois, qpois, rpois, where lambda is λv
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Explicit claims count distributions (MW 2.2) Poisson distribution

Compound Poisson model

The total claim amount S has a compound Poisson distribution

S ∼ CompPoi(λv , G)

if S has a compound distribution with N ∼ Poi(λv) for given λ, v > 0 and
individual claim size distribution G .

The compound Poisson distribution has nice properties such as:
The aggregation property ↑
The disjoint decomposition property ↓

These are reviewed in the next section, along with related new
techniques for computing the distribution of S.
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Explicit claims count distributions (MW 2.2) Mixed Poisson distribution
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Explicit claims count distributions (MW 2.2) Mixed Poisson distribution

Inhomogeneous portfolio

So far we have seen distributions with variance less (binomial) or
exactly equal (Poisson) to the mean.
In reality, actuarial data is often overdispersed, that is, variance is
larger than mean.
This could be due to frequency or severity, but it makes sense that
some of this extra variability would come from frequency.
If we believe in a Poisson frequency for known frequency parameter,
then additional uncertainty such as heterogeneity of risks in a portfolio,
uncertain conditions (weather, for instance) could be modelled with a
random Poisson parameter, and could explain the extra variability.
This is the idea of a mixed Poisson.
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Explicit claims count distributions (MW 2.2) Mixed Poisson distribution

The mixed Poisson distribution

Assume random Λ ∼ H with H(0) = 0, E [Λ] = λ, and Var(Λ) > 0.
Conditionally, given Λ, N ∼ Poi(Λv) for fixed volume v > 0.

We have then

Pr[N = n] =
∫∞

0 Pr[N = n|Λ = λ]dH(λ) =
∫∞

0
e−λv (λv)n

n! dH(λ);

E [N] = E [E [N|Λ]] = E [Λ]v = λv ;

Var(N) = E [Var(N|Λ)] + Var (E [N|Λ]) = λv + v2Var(Λ) > λv ;

MN(t) = E
[
etN
]

= E
[
E
[
etN |Λ

]]
= E

[
eΛv(et−1)

]
= MΛ(v [et − 1]).
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Explicit claims count distributions (MW 2.2) Mixed Poisson distribution

Example

If Λ ∼ inverse Gaussian(α, β) (Example 12.3.2):

N is Poisson Inverse Gaussian.
This distribution is the pig distribution in actuar, so that you can use
dpig, ppig, etc. . . ); see Section 5 of the vignette “distribution” of
actuar.
−→ S will be compound inverse Gaussian.

Another example, which is very famous, is Λ ∼ Γ, which leads to the
negative-binomial distribution.
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Explicit claims count distributions (MW 2.2) Negative-binomial distribution

Negative-binomial distribution

Assume λ is the mean, and will be “spread” according to a gamma
distribution:

Define Λ = λΘ.
Now, Θ ∼ Γ(γ, γ) such that

E [Θ] = 1 and Var(Θ) = 1
γ

and
E [Λ] = λ and Var(Λ) = λ2

γ
.

If conditionally, given Θ, N ∼ Poi(Θλv), then

N ∼ NegBin(λv , γ)

with volume v > 0, expected claims frequency λ > 0,
and dispersion parameter γ > 0.37/74



Explicit claims count distributions (MW 2.2) Negative-binomial distribution

Proof:

MN(t) = E [etN ] = E
[
E [etN |Θ]

]
= E

[
eΘλv(et−1)

]
=

(
γ

γ−λv(et−1)

)γ
=
(

γ
γ+λv−λvet

)γ
=
( γ

λv+γ

1− λv
λv+γ

et

)γ

,

which can be recognised as a negative-binomial with probability of “failure”

p = λv
λv + γ

(if we count failures until the γ-th success) so that

pk = Pr[N = k] =
(

k + γ − 1
k

)
pk(1 − p)γ

In R, use dnbinom, pnbinom, qnbinom, rnbinom, where size is γ and
prob is probability of success 1 − p (note volume is hidden in p
and will affect the scale of the distribution).38/74



Explicit claims count distributions (MW 2.2) Negative-binomial distribution

Interpretation

Θ reflects the uncertainty about the ‘true’ parameter of the Poisson
distribution.
Alternatively, it describes the distributions of “λ’s” in the population.
In the end we have

E [N] = λv ,

Var(N) = λv
(
1 + λv

γ

)
> λv ,

Vco
(

N
v

)
=

√
(λv)−1 + γ−1.

This additional uncertainty is not diversifiable
(remains even for large v):

Vco
(N

v

)
=
√

(λv)−1 + γ−1 → γ−1/2 > 0 for v → ∞.
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Explicit claims count distributions (MW 2.2) Negative-binomial distribution

Compound negative-binomial model

The total claim amount S has a compound negative-binomial
distribution

S ∼ CompNB(λv , γ, G)

if S has a compound distribution with N ∼ NegBin(λv , γ) for given
λ, v , γ > 0 and individual claim size distribution G .
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Additional properties and applications of Poisson frequencies Theorem 2.12: Aggregation property ↑

Theorem 2.12: Aggregation property ↑

Assume S1, . . . , Sn are independent with Sj ∼ CompPoi(λjvj , Gj) for all
j = 1, . . . , n. Aggregated claims have a compound Poisson distribution

S =
n∑

j=1
Sj ∼ CompPoi(λv , G), with

v =
n∑

j=1
vj , λ =

n∑
j=1

vj
v λj , G =

n∑
j=1

λjvj
λv Gj .

So what?

Independent n portfolios of losses can be easily aggregated.
Alternatively (or in addition), total claims paid over n years are
compound Poisson, even if the severity and frequency of losses vary
across years.
“Bottom-up” modelling
In Bowers et al. (1997), this is Theorem 12.4.1.41/74



Additional properties and applications of Poisson frequencies Theorem 2.12: Aggregation property ↑

Example 12.4.1 of Bowers et al. (1997)

Suppose that N1, N2, · · · , Nm are independent random variables. Further,
suppose that Ni follows Poisson(λi). Let y1, y2, · · · , ym be deterministic
numbers. What is the distribution of

y1N1 + · · · + ymNm?
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Additional properties and applications of Poisson frequencies Theorem 2.14: Disjoint decomposition property ↓

Preliminary 1: Add LoBs in the CompPoi formulation

Let us introduce Lines of Business (“LoB”) in the notation:

Let the set {1, . . . , m} be a partition of the portfolio, or different lines
of business (“LoB” thereafter). For instance, we could have
j ∈ {1, 2, 3} for car (j = 1), building (j = 2) and liability (j = 3) LoBs.
Let

(
p+

j

)
j=1,...,m

be a discrete probability distribution on the finite set
of sub-portfolios/LoBs {1, . . . , m} (thereafter just “LoB”).
We assume

p+
j > 0 for all j ,

that is, the probability of having claims in any of the m LoBs is strictly
positive.
We further assume that Gj is the claim size distribution of LoB j , with
Gj(0) = 0.
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Additional properties and applications of Poisson frequencies Theorem 2.14: Disjoint decomposition property ↓

Finally, we define the mixture distribution by

G(y) =
m∑

j=1
p+

j Gj(y) for y ∈ R.

This is the distribution of a claim, if we don’t know which LoB it
comes from.
Note that this matches the formulation in the aggregation property
Theorem 2.12 with

p+
j = λjvj

λv .

Now, define a discrete random variable I which indicates which
sub-portfolio/LoB a randomly selected claim Y belongs to:

Pr[I = j] = p+
j for all j ∈ {1, . . . , m}.
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Additional properties and applications of Poisson frequencies Theorem 2.14: Disjoint decomposition property ↓

We are now ready to define the following extended compound Poisson
model:

The total claims S =
∑N

i=1 Yi has a compound Poisson distribution as
defined earlier.
In addition, we assume that

(Yi , Ii)i≥1

are
mutually i.i.d. and independent of N,
with Yi having marginal distribution function G with G(0) = 0, and
Ii having marginal distribution function given by
Pr[I = j] = p+

j for all j ∈ {1, . . . , n}.
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Additional properties and applications of Poisson frequencies Theorem 2.14: Disjoint decomposition property ↓

Preliminary 2: Partition

The random vector (Y1, I1) takes values in R+ × {1, . . . , m}.
On this set we choose a finite sequence of sets

A1, . . . , An

such that

Ak ∩ Al = ∅ for all k ̸= l (no overlap);
∪n

k=1Ak = R+ × {1, . . . , m} (all-inclusive).

Such a sequence is called a “measurable disjoint decomposition” or
“partition” of R+ × {1, . . . , m}.
This partition is called “admissible” for (Y1, I1) if for all k = 1, . . . , n

p(k) = Pr[(Y1, I1) ∈ Ak ] > 0.

Note
∑n

k=1 p(k) = 1 due to the properties of the
partition above (no overlap and all-inclusive)46/74



Additional properties and applications of Poisson frequencies Theorem 2.14: Disjoint decomposition property ↓

We have two levels of partition:

Into LoBs:
Claims are classified according to a sub-portfolio or LoB
For instance: domestic motor and commercial motor
The probability of a claim being in LoB j is p+

j
The indicator for the claim to be in LoB j is Ij
(with probability p+

j of being 1)
Into a second level:

Claims are classified according to another set of criteria
For instance: geographical areas NSW and VIC
The probability of a claim being in geographical area k is p(k)
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Additional properties and applications of Poisson frequencies Theorem 2.14: Disjoint decomposition property ↓

Theorem 2.14: Disjoint decomposition ↓

Assume S is “doubly partitioned” as described above:

S fulfills the extended compound Poisson model assumptions above
(Preliminary 1).
We chose an admissible partition A1, . . . , An for (Y1, I1) (Preliminary
2).

Then the random variable (sum of claims for partition k):

Sk =
N∑

i=1
Yi1{(Yi ,Ii )∈Ak} ∼ CompPoi(λkvk , Gk),

for k = 1, . . . , n, with

λkvk = λvp(k) > 0, Gk(y) = Pr[Y1 ≤ y |(Y1, I1) ∈ Ak ].

Furthermore, the Sk ’s are independent (over k).
48/74



Additional properties and applications of Poisson frequencies Thinning of the Poisson process

5 Additional properties and applications of Poisson frequencies
Theorem 2.12: Aggregation property ↑
Theorem 2.14: Disjoint decomposition property ↓
Thinning of the Poisson process
✠ Sparse vector algorithm
Example 2.16: Large claim separation

49/74



Additional properties and applications of Poisson frequencies Thinning of the Poisson process

Thinning of the Poisson process

Assume that m = 1 (only one LoB)
The disjoint decomposition theorem implies that

Yi = Yi1{Yi ∈A1} + . . . + Yi1{Yi ∈An}.

For for each partition Ak (defined on the claims) a natural choice is
vk = v
λk = λp(k)

This means that the volume remains constant in each partition, but the
expected claims frequencies λk change proportionally to the
probabilities of falling in partition Ak , k = 1, . . . , n.
This is called thinning of the Poisson process.
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Additional properties and applications of Poisson frequencies ✠ Sparse vector algorithm

✠ Sparse vector algorithm

If S ∼ compound Poisson(λ, g(yi) = πi), i = 1, . . . , m then

S = y1N1 + . . . + ymNm,

where the Ni ’s

represent the number of claims of amount yi ;
are mutually independent;
are Poi (λi = λπi).

Proof: see tutorial exercise los18. Note also that this is a special case of
Theorem 2.14, and is Theorem 12.4.2 of Bowers et al. (1997).

So what?

Sparse vector algorithm: allows to develop an alternative method for
tabulating the distribution of S that is more efficient as m is small.
S can be used to approximate the Individual Risk Model if X = Ib (see
Module 3).50/74



Additional properties and applications of Poisson frequencies ✠ Sparse vector algorithm

✠ The sparse vector algorithm

(Bowers et al. 1997, Example 12.4.2) Suppose S has a compound Poisson
distribution with λ = 0.8 and individual claim amount distribution

yi Pr [Y = yi ]

1 0.250
2 0.375
3 0.375

Compute fS (s) = Pr [S = s] for s = 0, 1, ..., 6.

This can be done in two ways:

Basic method (seen earlier in the lecture): requires to calculate up to
the 6th convolution of Y .
Sparse vector algorithm: requires no convolution of Y .
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Additional properties and applications of Poisson frequencies ✠ Sparse vector algorithm

Solution - Basic Method

x g∗0 (x) g (x) g∗2 (x) g∗3 (x) g∗4 (x) g∗5 (x) g∗6 (x) fS (x)

0 1 - - - - - - 0.4493
1 - 0.250 - - - - - 0.0899
2 - 0.375 0.0625 - - - - 0.1438
3 - 0.375 0.1875 0.0156 - - - 0.1624
4 - - 0.3281 0.0703 0.0039 - - 0.0499
5 - - 0.2813 0.1758 0.0234 0.0010 - 0.0474
6 - - 0.1406 0.2637 0.0762 0.0073 0.0002 0.0309
n 0 1 2 3 4 5 6
Pr[N =
n] =
e−0.8 (0.8)n

n!

0.4493 0.3595 0.1438 0.0383 0.0077 0.0012 0.0002

The convolutions are done in the usual way.
The fS(x) are the sumproduct of the row x and row Pr[N = n].
The number of convolutions (and thus of columns) will increase by 1
for each new value of fS(x), without bound!
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Additional properties and applications of Poisson frequencies ✠ Sparse vector algorithm

Solution - Sparse vector algorithm

Thanks to Theorem 2.12, we can write S = N1 + 2N2 + 3N3

x Pr [N1 = x ] Pr [2N2 = x ] Pr [3N3 = x ] Pr [N1 + 2N2 = x ]fS (x)

0 0.818731 0.740818 0.740818 0.606531 0.449329
1 0.163746 0 0 0.121306 0.089866
2 0.016375 0.222245 0 0.194090 0.143785
3 0.001092 0 0.222245 0.037201 0.162358
4 0.000055 0.033337 0 0.030974 0.049906
5 0.000002 0 0 0.005703 0.047360
6 0.000000 0.003334 0.033337 0.003288 0.030923
xi 1 2 3
λi =
λπi

0.2 0.3 0.3

Pr[Ni =
x/i ]

e−0.2 (0.2)x

x ! e−0.3 (0.3)x/2

(x/2)! e−0.3 (0.3)x/3

(x/3)!

The fS(x) are convolution, e.g.:
(5)[3] = .818731 · 0 + .163746 · .222245 + .016375 · 0 + .001092 · .740818
(6)[3] = .740818 · .037201 + 0 · .194090 + 0 · .121306 + .222245 · .606531

Note that only two convolutions are needed: columns (5) and (6).
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Additional properties and applications of Poisson frequencies Example 2.16: Large claim separation

Example 2.16: Large claim separation

This is a very important (and convenient) application of the Disjoint
decomposition property (Theorem 2.14).
Attritional and catastrophic claims often have very different
distributions (different G ’s); see also
https://www.actuaries.digital/2022/01/10/catastrophe-vs-standard-
loss-modelling/
The idea here is to divide the claims into different layers with different
distributions:

Small claims are modelled using a parametric distribution for which it is
easy to obtain the distribution of the compound distribution, potentially
even approximated with a normal distribution thanks to volume and light
right tail;
Large claims are typically modelled with a Pareto distribution with
threshold M and tail parameter α > 1 (see Module 6 for a justification
of this, and for the choice of an appropriate M). The could also be
“modelled” (see article above)
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Additional properties and applications of Poisson frequencies Example 2.16: Large claim separation

Assuming two layers:

We choose a large claims threshold M > 0 such that

0 < G(M) < 1,

that is, there is probability mass on either size of M.
We define the partition

A = Asc = {Y1 ≤ M} and Ac = Alc = {Y1 > M}.

Assume that
S ∼ CompPoi(λv , G).

We now define the small and large claims layers as

Ssc =
∑N

i=1 Yi1{Yi ≤M}, and
Slc =

∑N
i=1 Yi1{Yi >M},

respectively.
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Additional properties and applications of Poisson frequencies Example 2.16: Large claim separation

Theorem 2.14 implies that Ssc and Slc are independent and compound
Poisson distributed with

Ssc ∼ CompPoi(λscv = λG(M)v ,
Gsc(y) = Pr[Y1 ≤ y |Y1 ≤ M]), and

Slc ∼ CompPoi(λlcv = λ(1 − G(M))v ,
Glc(y) = Pr[Y1 ≤ y |Y1 > M]),

respectively.
The distribution of

S = Ssc + Slc

can then be obtained by a simple convolution of distributions of Ssc
and Slc (thanks to independence); see Module 4 for examples (✠).
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✠ Parameter estimation (MW 2.3) ✠ Introduction

✠ Estimation methods

You should be familiar with the main estimation methods:

Method of moments
Maximum likelihood estimation

Here the problem is slightly complicated because our observations may not
be directly comparable due to varying exposures v ’s.

Assume that (N1, . . . , NT )′ is the vector of observations.
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✠ Parameter estimation (MW 2.3) ✠ What to do with volumes? Lemma 2.26

✠ What to do with volumes? Lemma 2.26

The key idea here is to find the minimum variance method of moments
estimator, when the volumes across the observations can vary.
This is what is different from a straight method of moments estimator,
and explains why we need to think it through: how to deal with those
volumes?
Assume there exist strictly positive volumes v1, . . . , vT such that the
components of (N1/v1, . . . , NT /vT ) are independent with

λ = E
[Nt

vt

]
and τ2

t = Var
(Nt

vt

)
∈ (0, ∞),

for all t = 1, . . . , T .
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✠ Parameter estimation (MW 2.3) ✠ What to do with volumes? Lemma 2.26

Lemma 2.26 states that the unbiased, linear estimator for λ with minimal
variance is given by

λ̂MV
T =

( T∑
t=1

1
τ2

t

)−1 T∑
t=1

Nt/vt
τ2

t
,

with variance

Var(λ̂MV
T ) =

( T∑
t=1

1
τ2

t

)−1

.

Note:

We haven’t made any distributional assumption yet - this estimates
E
[

Nt
vt

]
via method of moments, taking the vt ’s into account in an

optimal way (in the sense that it minimises the variance of the
estimator).
The superscript “MV” stands for “minimal variance”.
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✠ Parameter estimation (MW 2.3) ✠ Method of moments

✠ Binomial and Poisson cases

Unbiased, minimal variance estimators:

binomial case for p:

p̂MV
T = 1∑T

s=1 vs

T∑
t=1

Nt =
T∑

t=1

vt∑T
s=1 vs

Nt
vt

∼

Furthermore,
∑T

t=1 Nt ∼ Binom(
∑T

s=1 vs , p), which means we know
the distribution of p̂MV

T .
Poisson case for λ:

λ̂MV
T = 1∑T

s=1 vs

T∑
t=1

Nt =
T∑

t=1

vt∑T
s=1 vs

Nt
vt

Here,
∑T

t=1 Nt ∼ Poi(λ
∑T

s=1 vs).
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✠ Parameter estimation (MW 2.3) ✠ Method of moments

✠ Negative binomial case

More complicated, because:

E
[Nt

vt

]
= λ and Var

(Nt
vt

)
= λ/vt + λ2/γ = τ2

t ,

Unbiased (but not guaranteed minimal variance):

λ̂NB
T = 1∑T

s=1 vs

T∑
t=1

Nt =
T∑

t=1

vt∑T
s=1 vs

Nt
vt
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✠ Parameter estimation (MW 2.3) ✠ Method of moments

✠ We need a sense of the dispersion for estimating the dispersion parameter
γ.

Let the weighted sample variance

V̂ 2
T = 1

T − 1

T∑
t=1

vt

(Nt
vt

− λ̂NB
T

)2
.

Then we have

γ̂NB
T = (λ̂NB

T )2

V̂ 2
T − λ̂NB

T

1
T − 1

( T∑
t=1

vt −
∑T

t=1 v2
t∑T

t=1 vt

)
,

ONLY if V̂ 2
T > λ̂NB

T . Otherwise use Poisson or binomial.

62/74



✠ Parameter estimation (MW 2.3) ✠ Maximum likelihood estimators

6 ✠ Parameter estimation (MW 2.3)
✠ Introduction
✠ What to do with volumes? Lemma 2.26
✠ Method of moments
✠ Maximum likelihood estimators

63/74



✠ Parameter estimation (MW 2.3) ✠ Maximum likelihood estimators

✠ Binomial and Poisson cases

Estimators are identical to method of moments estimators. Or conversely,
the MLE estimators are actually unbiased.

binomial case for p:

p̂MLE
T = 1∑T

s=1 vs

T∑
t=1

Nt =
T∑

t=1

vt∑T
s=1 vs

Nt
vt

= p̂MV
T

Poisson case for λ:

λ̂MLE
T = 1∑T

s=1 vs

T∑
t=1

Nt =
T∑

t=1

vt∑T
s=1 vs

Nt
vt

= λ̂MV
T
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✠ Parameter estimation (MW 2.3) ✠ Maximum likelihood estimators

✠ Negative binomial case

Assume N1, . . . , NT are independent and NegBin(λvt , γ). The MLE
(λ̂MLE

T , γ̂MLE
T ) are the solution of

∂

∂(λ, γ)

T∑
t=1

log
(

Nt + γ − 1
Nt

)
+ γ log(1 − pt) + Nt log pt = 0,

with pt = λvt/(γ + λvt) ∈ (0, 1).
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The (a, b, 0) and (a, b, 1) classes of distributions The (a, b) class of Panjer distributions (4.2.1)

The (a, b) class of Panjer distributions (4.2.1)

A class of distributions has the following property

Pr[N = n] =
(

a + b
n

)
Pr[N = n − 1], or pk

pk−1
=
(

a + b
k

)
.

This is the (a, b) class of “Panjer distributions”. This means that Pr[N = n]
can be obtained recursively with initial value Pr[N = 0]; see Wuthrich
(2023), Definition 4.6.

The exhaustive list of its members (see Wuthrich 2023 Lemma 4.7) is
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The (a, b, 0) and (a, b, 1) classes of distributions The (a, b) class of Panjer distributions (4.2.1)

Distribution a b Pr[N = 0]

Poisson (λ) 0 λ e−λ

Neg Bin (γ, p) p (γ − 1)p (1 − p)γ

Binomial (m, p) −p/(1 − p) (m+1)p/(1−p) (1 − p)m

Exercise: prove the results in the above table!

(Note the Negative Binomial is parametrised as per Proposition 2.20 in
Wuthrich (2023) (second definition))
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The (a, b, 0) and (a, b, 1) classes of distributions The (a, b) class of Panjer distributions (4.2.1)

First three cumulants of the (a, b) family

Distribution E [N] Var(N) E
[
(N − E [N])3]

Poisson (λ) λ λ λ

Neg Bin (γ, p) γp
1 − p

γp
(1 − p)2

γp(1 + p)
(1 − p)3

Binomial
(m, p)

mp mpq mpq(q − p)

Exercise:

check these results using the cgf
find the first 3 cumulants of S, as well as ςS for each member of the
family
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The (a, b, 0) and (a, b, 1) classes of distributions ✠ actuar and the (a, b, 1) class

✠ actuar and the (a, b, 1) class

The package actuar extends the definition above to allow for
zero-truncated and zero-modified distributions.
The Poisson, binomial and negative-binomial (and special case
geometric) are all well supported in Base R with the d, p, q and r
functions.
If one takes the Panjer equation for granted, then we can think of p0
as the mass that will make the pmf add up to one:

given Panjer : p0 is such that
∞∑

k=0
pk = 1.

We introduce here the (a, b, 1) class which extends the idea above so
that we have more freedom on the mass at 0.
The reference for this section is Section 4 of the vignette “distribution”
of actuar
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The (a, b, 0) and (a, b, 1) classes of distributions ✠ The (a, b, 1) class of distributions

✠ The (a, b, 1) class of distributions

A discrete random variable is a member of the ** (a, b, 1) class of
distributions** if there exist constants a and b such that

pk
pk−1

= a + b
k , ∗ ∗ k = 2, 3, . . . ∗ ∗.

Note:

The recursion starts at k = 2 for the (a, b, 1) class.
The extra freedom allows the probability at zero to be set to any
arbitrary number 0 ≤ p0 ≤ 1
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The (a, b, 0) and (a, b, 1) classes of distributions ✠ The (a, b, 1) class of distributions

✠ Zero-truncated distributions

Setting p0 = 0 in the (a, b, 1) class defines the subclass of
zero-truncated distributions
Members are the zero-truncated Poisson (actuar::ztpois),
zero-truncated binomial (actuar::ztbinom), zero-truncated
negative-binomial (actuar::ztnbinom), and the zero-truncated
geometric (actuar::ztgeom).
Let pT

k denote the probability mass at k for a zero-truncated
distribution (“T” for truncated). We have

pT
k =

{
0, k = 0;

pk
1−p0

, k = 1, 2, . . . .
,

where pk is the probability mass of the corresponding member of the
(a, b, 0) — that is, (a, b) — class.
actuar provides the d, p, q, and r functions of the zero-truncated
distributions mentioned above.
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The (a, b, 0) and (a, b, 1) classes of distributions ✠ The (a, b, 1) class of distributions

✠ Zero-modified distributions

Setting p0 ≡ pM
0 (0 < pM

0 < 1) in the (a, b, 1) class defines the
subclass of zero-modified distributions (“M” for “modified”)
These distributions are discrete mixtures between a degenerate
distribution at zero, and the corresponding distribution from the
(a, b, 0) class.
Let pM

k denote the probability mass at k for a zero-modified
distribution. We have then

pM
k =

(
1 − 1 − pM

0
1 − p0

)
1{k=0} + 1 − pM

0
1 − p0

pk .

Alternatively,

pM
k =

{
pM

0 , k = 0;
1−pM

0
1−p0

pk , k = 1, 2, . . . .
,

where pk is the probability mass of the corresponding member of the
(a, b, 0) class.71/74
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Quite obviously, zero-truncated distributions are zero-modified
distributions with pM

0 = 0, and

pM
k = pM

0 1{k=0} + (1 − pM
0 )pT

k .

Members are the zero-modified Poisson (actuar::zmpois),
zero-modified binomial (actuar::zmbinom), zero-modified
negative-binomial (actuar::zmnbinom), and the zero-modified
geometric (actuar::zmgeom). actuar provides the d, p, q, and r
functions of the zero-truncated distributions mentioned above.
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plot(dpois(0:7, 2.5), pch = 20, col = "red", ylim = c(0, 0.3),
cex = 1.5, type = "b")

points(dztpois(0:7, 2.5), pch = 20, col = "blue", type = "b")
points(dzmpois(0:7, 2.5, 2 * dpois(0, 2.5)), pch = 20, col = "green",

type = "b")
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